Tracking Technology

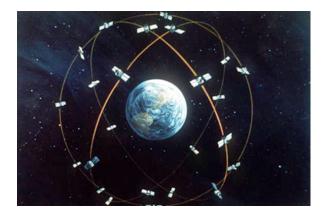
Tracking Technology

- The problem: where is "stuff" in the real world?
- Some things are fixed and can be modeled
 - Buildings, Roads, props used for your experience
- What about everything else?
 - User: Head, hands, body
 - Mobile objects like chairs and tables
 - Other people
- Most important for AR: user's head (really, display and eye) *relative* to the physical world being augmented
 - To overlay graphics on world, we need to know the relationships between everything we care about
- *Tracking* refers to keeping track of moving things over time

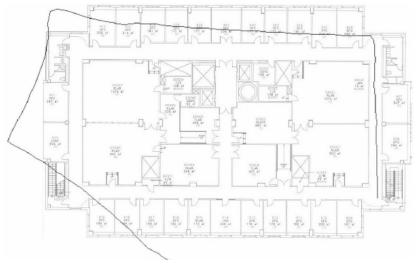
The Basic Idea

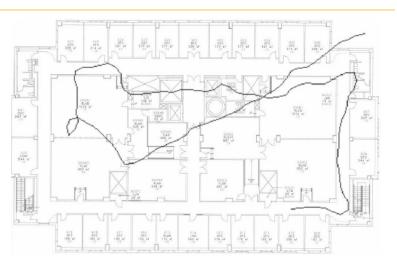
- A device that monitors the location of something
- Absolute location requires a measurement frame
 - Compass, inclinometers (the earth)
 - Computer vision (the center of projection of the camera)
 - GPS (the satellites circling the earth)
 - Magnetic (a controlled electromagnet and a sensor)
 - Ultrasonic (speakers and microphones)
- Relative location typically infers location
 - Accelerometers (sense acceleration, integrate to get motion)
 - Pedometers (count steps, infer distance)
- All subject to error!

Trackers that use Fixed Sources


- Examples
 - UNC/3rdTech HiBall (shown)
 - Intersense IS-600, IS-900
 - Polhemus and Ascension Magnetic Trackers
 - GPS, Magnetic compass
- One component is fixed in known location
 - E.g., LEDs or microphones on ceiling
- Second component location unknown
 - E.g., Hiball camera, speaker
- Typically sense multiple 1 or 2d relationships and triangulate
 - Multiple speakers hear sound, multiple LEDs are seen, multiple satellites are heard

Example: GPS


(www.howstuffworks.com/gps.html)


- Receive signal from satellites
 - Estimate distance to each
 - Time of flight (crude)
 - Code decryption (much better)
 - Triangulate multiple signals
- Errors
 - Selective Availability (no longer)
 - Upper atmosphere
 - Clouds, trees, ...
 - Multipath effects from signal bounce
- Differential GPS
 - Compute the error is at a know location
 - Apply correction to other receivers (sort of...)

Relative Sensors Accumulate Error

- Even the best sensors become inaccurate over time as errors accumulate
- Can be usefully combined with other information
- E.g., pedometer data from Columbia University

AR Technology

Registration Error: Misalignment of Virtual and Physical World

- A primary source of *static* registration error is tracking error
 - Also Calibration Error of multiple trackers, HMD,...
- Dynamic error is more significant: latency is a killer
 - Internal tracker computation time
 - Communication to computer
 - Updating of graphics state, rendering on screen
- Much more serious in optical- than video-see-through
 - Can delay video to match other latency if needed!
 - Jacobs, M., Livingston, M. A., and State, A. (1997) "Managing Latency in Complex Augmented Reality Systems." In Proceedings of 1997 Symposium on Interactive 3D Graphics, Providence, RI, April 27-30, 1997, pp. 49–54.

Tracking tech you might use

- GPS (Differential WAAS)
 - 1-2m best case, 2-4m typical case, 10m+ often
- Orientation
 - Fused phone sensors (accel, mag, gyro)
 - Better commercial ones: Intersense Inertiacube/Motionnode
 - High accuracy orientation sensor
- Planar Image or b&w marker tracking
 - Relative to camera, multiple at a time
 - Build more complex objects in fixed relationships, sometimes
- Other devices in AEL (might be available)
 - Intersense trackers (Inertiacube, IS-600, Vistracker)
 - More accurate GPS (40-90cm)

