

Asynchronous Programming

1Sunday, September 8, 13

Turn-in Instructions

 A “main” file, called gui.py
 See previous slides for how to make it “main”
 I’ll run it from the command line

 Put in a ZIP file, along with any additional needed files
 Name the ZIP file your_last_name.zip
 Submit via t-square, using the t-square submission text box to

provide details on:
 Anything special we need to do to run it
 What platform you developed/tested it on
 Anything else you think we should know

2Sunday, September 8, 13

Asynchronous Programming

3Sunday, September 8, 13

Asynchronous Programming

 Probably the most used idiom for interactive systems
 Why? Interactions with the real world

 Must be prepared to respond to events external to your program
 You don’t know when these might occur
 They may come from multiple sources (a user, remote users, sensors,

hardware devices)

 Also, the single biggest mind-shift away from doing simple “straight
line” programs

 A few canonical examples:
 GUIs (responsive to mice, keyboard)
 Systems that interact with hardware (interrupts)
 Collaborative tools (multiple users, each doing their own thing)

4Sunday, September 8, 13

Asynchrony and Modularity

 First-time programmers:
 Try to do everything “in line” in one flow of control
 Works only for trivial problems
 How would you do an “in line” program that needs to respond to

multiple event sources?
 N.B.: It’s actually possible. In fact, it’s one of the ways that asynchronous

programming works “under the hood.” We’ll talk about it later in the
semester.

 Asynchronous programming requires that you break your program
down into pieces that are invoked independently whenever any
external event happens

 Modularity

5Sunday, September 8, 13

Modularity is a Good Thing

 Fortunately, modularity is a good goal anyway
 Break apart code into more manageable chunks (abstraction)
 Keep the entanglements between chunks as simple as possible

(encapsulation)
 Corollary: keep as few things global as possible

 Treat each chunk as a “black box” that does a simple thing, and does it
well (information hiding)

 Object-oriented programming is modularity on steroids (an
oversimplification)

 Modularity is important when even one person is working on it
 Easier to conceptualize the entire system; chunk behavior into building

blocks, etc.

You can’t make complexity go away completely, but you
can learn techniques to manage it!

6Sunday, September 8, 13

Thinking Asynchronously
 Asynchronous: things can happen at arbitrary times
 Your program will probably have two types of code in it:

 Set-up code, that gets the initial windows on the screen, does
initialization, etc.

 A collection of program chunks that respond to particular types of
events that occur

 Some terminology:
 An event is some external occurrence
 The asynchronously-callable program chunks are event handlers
 An event dispatcher is the thing that calls your event handlers; it is

typically provided by the system (language, library, OS, ...)
 Your set-up code will install your various event handlers, so that the

event dispatcher will know which ones to call
 Much of your program’s logic will reside in the event handlers!

7Sunday, September 8, 13

Common Idiom: GUI Callbacks

 In many GUI systems, event handlers are called callbacks
 These are just functions that will be invoked when an event occurs
 Typically, they take a predefined set of arguments (what event

happened, etc.)
 They are parts of your program that get called back when something

happens
 How you associate your specific callback with a particular type of

event depends on the particulars of the dispatch system

8Sunday, September 8, 13

Example: GUI Callbacks in Jython
with Swing

import javax.swing as swing

def callback(event):

print “Button was pressed: “, event

window = swing.JFrame(”CS6452”)

button = swing.JButton(”Press Me!”)

button.actionPerformed=callback

window.contentPane.add(button)

window.pack()

window.show()

Results:
Button was pressed:
java.awt.event.ActionEvent[ACTION_PERFORMED,cm
d=Press Me!,when=72985371,modifiers=Button1] on
javax.swing.JButton[,
0,0,87x29,layout=javax.swing.OverlayLayout,alignmentX
=0.0,alignmentY=0.5,border=apple.laf.AquaButtonBorde
r@eb1670,flags=296,maximumSize=,minimumSize=,pre
ferredSize=,defaultIcon=,disabledIcon=,disabledSelecte
dIcon=,margin=javax.swing.plaf.InsetsUIResource[top=3
,left=14,bottom=3,right=14],paintBorder=true,paintFocus
=true,pressedIcon=,rolloverEnabled=false,rolloverIcon=,
rolloverSelectedIcon=,selectedIcon=,text=Press
Me!,defaultCapable=true]

9Sunday, September 8, 13

The Details of Event-Based
Programming in Swing

 In Swing, events are generated based on user input
 Mouse clicks, movement, release
 Key presses, releases
 Combinations of all of the above

 Each widget gets to define what constitutes an event for it, and how
callbacks will be associated with it
 button.actionPerformed
 list.valueChanged

 Any given widget may allow multiple kinds of callbacks to be
associated with it
 panel.mousePressed
 panel.mouseReleased
 panel.mouseClicked

10Sunday, September 8, 13

The Details of Event-Based
Programming in Swing (cont’d)

 Event dispatcher calls your code when the appropriate combination
of user inputs occurs

 Passes an event argument to your code
 Specific details contained in the event depend on type of callback:

 button.actionPerformed ActionEvent
 source: the widget that generated the event
 timestamp: when the event occurred
 modifiers: which keys were held down when the event occurred

 list.valueChanged ListSelectionEvent
 firstIndex: first index of changed item
 lastIndex: last index of changed item

 To get specific details of any given event type, look at the Java
documentation (http://java.sun.com/j2se/1.5.0/docs/api/) or ask me or
the TA

11Sunday, September 8, 13

http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/

The Details of Event-Based
Programming in Swing (cont’d)

 You can call your callbacks yourself
 They’re just normal functions
 Simulate what happens when user input occurs

 Make sure you return quickly from your event handlers!
 The program is waiting until you finish so that it can continue running
 Common signs of a non-returning callback:

 Program appears to freeze
 Program window doesn’t redraw
 Buttons become inactive

12Sunday, September 8, 13

O-O and Asynchronous
Programming

 Simple callbacks are a perfectly acceptable idiom; they’re the
“baseline” of asynchronous programming

 If you do much callback programming, though, you begin to notice
some common patterns:
 Often need to share some data across several related callbacks
 Often need to keep track of what happened the last time you ran the

callback
 There’s a group of variables and related functions that are used only by

the callback

13Sunday, September 8, 13

An Example
import javax.swing as swing

startx = 0
starty = 0

def pressCallback(event):
 global startx, starty
 startx = event.x
 starty = event.y

def releaseCallback(event):
 global startx, starty
 graphics = event.source.graphics
 graphics.drawLine(startx, starty, event.x, event.y)

if __name__ == "__main__":
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)
 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 canvas.mousePressed = pressCallback
 canvas.mouseReleased = releaseCallback

14Sunday, September 8, 13

O-O and Asynchronous
Programming (cont’d)

 Last mouse-down position needs to be remembered until the next
time the callback is invoked
 Can’t save in a local variable, as it will be reset each time the callback is

invoked
 Option #1: keep all of this cross-callback information in global

variables
 Why is this a bad idea?

 The information is specific to the drawing callbacks; nothing else should
use it

 Can’t have multiple widgets of same kind (one set of variables!)
 By making it global, you increase program clutter, and the mental cycles

needed to manage it
 Worse: you run the risk that someone (you?) will misunderstand what

the global variables are for, and reuse them for something else

15Sunday, September 8, 13

O-O and Asynchronous
Programming (cont’d)

 The principle of data hiding:
 Keep data as “close” to the behavior it controls as possible
 Keep it inaccessible to everything else that doesn’t need to use it

 The more of the inner workings of something you expose, the
more likely it is to be used in the wrong way

 Option #2: object-oriented programming provides a nice way to
handle this:
 Each handler is an object that contains whatever information is

necessary for it to execute properly
 Internal state is not visible outside the handler object
 Well-designed objects will allow the user to use them only in the way

they were intended

16Sunday, September 8, 13

Example of O-O Event Handling
import javax.swing as swing

class Draw:
 def __init__(self):
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)

 canvas.mousePressed = self.pressCallback
 canvas.mouseReleased = self.releaseCallback

 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 def pressCallback(self, event):
 self.startx = event.x
 self.starty = event.y

 def releaseCallback(self, event):
 graphics = event.source.graphics
 graphics.drawLine(self.startx, self.starty, event.x, event.y)

if __name__ == "__main__":
 draw = Draw()

17Sunday, September 8, 13

Example of O-O Event Handling
import javax.swing as swing

class Draw:
 def __init__(self):
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)

 canvas.mousePressed = self.pressCallback
 canvas.mouseReleased = self.releaseCallback

 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 def pressCallback(self, event):
 self.startx = event.x
 self.starty = event.y

 def releaseCallback(self, event):
 graphics = event.source.graphics
 graphics.drawLine(self.startx, self.starty, event.x, event.y)

if __name__ == "__main__":
 draw = Draw()

Record of last X,Y positions are stored in the Draw
object. Not easily visible outside the object, easily shared
among just these callbacks.

18Sunday, September 8, 13

Objects As a Structuring
Principle

 Very often, the data in your program will have a natural structure
 In a drawing program, each drawing window will have its own

contents, current mode, etc., that is not shared by any other open
windows
 All of this information can be grouped together into a DrawingWindow

object
 One DrawingWindow object per open window
 No need to make the information needed by it global

 In a chat program, each ongoing chat has its own list of users, and
its own message history
 The user list, history, etc., could be grouped into a Chat object
 One Chat object per ongoing chat
 No need to make all of this information global

19Sunday, September 8, 13

Creating Objects

 Where do new objects come from?
 In an event-driven program, they usually are created in response to

events!
 Example:

 User clicks “New Chat” button in GUI
 Callback creates a new Chat object to represent the details of that

chat

def newChat(event):
chat = Chat()

chat.users = [me, buddyList.selectedValue]

20Sunday, September 8, 13

Managing Global State Effectively
 Some times, you really do need to store some stuff globally

allMyChats=[]

def newChat(event):

chat = Chat()

chat.users = [me, buddyList.selectedValue]

allMyChats.append(chat)

 Useful idiom: keep track of objects through global data structure
 Lists and Dictionaries are very helpful here
 Use Lists for simple, ordered collection of stuff
 Use Dictionaries when there’s a natural identifier for stored objects
 Extra bonus: since you update a collection by invoking a method on it

(and not assigning to it), you avoid some of the scoping problems/
accidents we talked about last week

21Sunday, September 8, 13

Lab Time!

22Sunday, September 8, 13

