Asynchronous Programming

l

Georgia
Tech 1

—

Sunday, September 8, 13

(XY
o000
) o000
Georgia | eeo
Tech : o

Turn-in Instructions

® A“main” file, called gui.py

See previous slides for how to make it “main”

I'll run it from the command line
® Putin a ZIP file, along with any additional needed files
® Name the ZIP file your_last_name.zip

® Submit via t-square, using the t-square submission text box to
provide details on:

Anything special we need to do to run it
What platform you developed/tested it on

Anything else you think we should know

Sunday, September 8, 13 2

Asynchronous Programming

Georgia
Tech ‘

Sunday, September 8, 13

(XY
o000
) o000
Georgia | eeo
Tech : o

Asynchronous Programming

® Probably the most used idiom for interactive systems

® Why! Interactions with the real world
Must be prepared to respond to events external to your program
You don’t know when these might occur

They may come from multiple sources (a user, remote users, sensors,
hardware devices)

® Also, the single biggest mind-shift away from doing simple “straight
line” programs

® A few canonical examples:
GUIs (responsive to mice, keyboard)
Systems that interact with hardware (interrupts)

Collaborative tools (multiple users, each doing their own thing)

Sunday, September 8, 13 4

o000
o000
) Ty
Georgia | eeo
Tech et

Asynchrony and Modularity

® First-time programmers:
Try to do everything “in line” in one flow of control
Works only for trivial problems

How would you do an “in line” program that needs to respond to
multiple event sources!?

N.B.: It’s actually possible. In fact, it'’s one of the ways that asynchronous
programming works “under the hood.” We’ll talk about it later in the
semester.
® Asynchronous programming requires that you break your program
down into pieces that are invoked independently whenever any
external event happens

® Modularity

Sunday, September 8, 13 5

Georgia
Tech

Modularity is a Good Thing

® Fortunately, modularity is a good goal anyway
Break apart code into more manageable chunks (abstraction)

Keep the entanglements between chunks as simple as possible
(encapsulation)

Corollary: keep as few things global as possible
Treat each chunk as a “black box” that does a simple thing, and does it
well (information hiding)

® Object-oriented programming is modularity on steroids (an
oversimplification)

® Modularity is important when even one person is working on it

Easier to conceptualize the entire system; chunk behavior into building
blocks, etc.

You can’t make complexity go away completely, but you
can learn techniques to manage it!

Sunday, September 8, 13 6

Thinking Asynchronously

(Y X)
XXX
) TXrx
Georgia | eeo
Tech : bt

Asynchronous: things can happen at arbitrary times
Your program will probably have two types of code in it:

Set-up code, that gets the initial windows on the screen, does
initialization, etc.

A collection of program chunks that respond to particular types of
events that occur

Some terminology:
An event is some external occurrence
The asynchronously-callable program chunks are event handlers

An event dispatcher is the thing that calls your event handlers; it is
typically provided by the system (language, library, OS, ...)

Your set-up code will install your various event handlers, so that the
event dispatcher will know which ones to call

Much of your program’s logic will reside in the event handlers!

Sunday, September 8, 13 7

o000
o000
) Ty
Georgia | eeo
Tech et

Common ldiom: GUI Callbacks

® |n many GUI systems, event handlers are called callbacks
These are just functions that will be invoked when an event occurs

Typically, they take a predefined set of arguments (what event
happened, etc.)

They are parts of your program that get called back when something
happens

® How you associate your specific callback with a particular type of
event depends on the particulars of the dispatch system

Sunday, September 8, 13 8

Example: GUI Callbacks in Jython ceorgia
with Swing

import javax.swing as swing

def callback(event):

print “Button was pressed:*, event

window = swing.JFrame(”CS6452”)
button = swing.JButton(”Press Me!”)

button.actionPerformed=callback

window.contentPane.add(button)

window.pack()

window.show()

(56452

[Press Me!)

Results:

Button was pressed:
java.awt.event.ActionEvent[ACTION_PERFORMED,cm
d=Press Me!,when=72985371,modifiers=Button1] on
javax.swing.JButton],
0,0,87x29,layout=javax.swing.OverlayLayout,alignmentX
=0.0,alignmentY=0.5,border=apple.laf.AquaButtonBorde
r@eb1670,flags=296,maximumSize=,minimumSize=,pre
ferredSize=,defaultlcon=,disabledlcon=,disabledSelecte
dlcon=,margin=javax.swing.plaf.InsetsUIResource[top=3
Jleft=14 bottom=3,right=14],paintBorder=true,paintFocus
=true,pressedicon=,rolloverEnabled=false,rollovericon=,
rolloverSelectedlcon=,selectedlcon=,text=Press
Me!,defaultCapable=true]

Sunday, September 8, 13

The Details of Event-Based Georgia | eees
Tech :'

Programming in Swing

® |n Swing, events are generated based on user input
Mouse clicks, movement, release
Key presses, releases

Combinations of all of the above

® Each widget gets to define what constitutes an event for it,and how
callbacks will be associated with it

button.actionPerformed

list.valueChanged

® Any given widget may allow multiple kinds of callbacks to be
associated with it

panel.mousePressed
panel.mouseReleased

panel.mouseClicked

Sunday, September 8, 13 10

The Details of Event-Based Georgia | eees
Tech :'

Programming in Swing (cont'd)

® Event dispatcher calls your code when the appropriate combination
of user inputs occurs

® Passes an event argument to your code

® Specific details contained in the event depend on type of callback:
button.actionPerformed ::> ActionEvent

source: the widget that generated the event
timestamp: when the event occurred

modifiers: which keys were held down when the event occurred
list.valueChanged ::> ListSelectionEvent

firstindex: first index of changed item

lastIndex: last index of changed item

To get specific details of any given event type, look at the Java
documentation (http://java.sun.com/j2se/1.5.0/docs/api/) or ask me or
the TA

Sunday, September 8, 13 11

http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/

The Details of Event-Based Georgia | eees
Tech :0

Programming in Swing (cont'd)

® You can call your callbacks yourself
They’re just normal functions

Simulate what happens when user input occurs

® Make sure you return quickly from your event handlers!
The program is waiting until you finish so that it can continue running
Common signs of a non-returning callback:
Program appears to freeze
Program window doesn’t redraw

Buttons become inactive

Sunday, September 8, 13 12

00

0000
O-0O and Asynchronous Georgia §§:’
Programming

® Simple callbacks are a perfectly acceptable idiom; they’re the
“baseline” of asynchronous programming

® [f you do much callback programming, though, you begin to notice
some common patterns:
Often need to share some data across several related callbacks

Often need to keep track of what happened the last time you ran the
callback

There’s a group of variables and related functions that are used only by
the callback

Sunday, September 8, 13 13

An Example

import javax.swing as swing

startx =0
starty =0

def pressCallback(event):
global startx, starty
startx = event.x
starty = event.y

def releaseCallback(event):
global startx, starty
graphics = event.source.graphics
graphics.drawLine(startx, starty, event.x, event.y)
if _name__=="__main__":
frame = swing.JFrame("Simple Drawing Program")
canvas = swing.JPanel()
canvas.preferredSize = (400, 400)
frame.contentPane.add(canvas)
frame.pack()
frame.show()

canvas.mousePressed = pressCallback
canvas.mouseReleased = releaseCallback

Georgia
Tech

Sunday, September 8, 13

14

O-0O and Asynchronous Georgia

Tech

Programming (cont'd)

® Last mouse-down position needs to be remembered until the next
time the callback is invoked

Can’t save in a local variable, as it will be reset each time the callback is
invoked

e Option #1: keep all of this cross-callback information in global
variables

® Why is this a bad idea!?

The information is specific to the drawing callbacks; nothing else should
use it

Can’t have multiple widgets of same kind (one set of variables!)

By making it global, you increase program clutter, and the mental cycles
needed to manage it

Worse: you run the risk that someone (you?) will misunderstand what
the global variables are for, and reuse them for something else

Sunday, September 8, 13 15

00
0000
) o000
O-0O and Asynchronous Gogroia | 332

Programming (cont'd)

® The principle of data hiding:
Keep data as “close” to the behavior it controls as possible

Keep it inaccessible to everything else that doesn’t need to use it

® The more of the inner workings of something you expose, the
more likely it is to be used in the wrong way

e Option #2: object-oriented programming provides a nice way to
handle this:

Each handler is an object that contains whatever information is
necessary for it to execute properly

Internal state is not visible outside the handler object

Well-designed objects will allow the user to use them only in the way
they were intended

Sunday, September 8, 13 16

(Y X)
'TXX
) o000
Georgia o000
Tech : b

Example of O-O Event Handling

import javax.swing as swing

class Draw:
def __init__(self):
frame = swing.JFrame("Simple Drawing Program")
canvas = swing.JPanel()
canvas.preferredSize = (400, 400)

canvas.mousePressed = self.pressCallback
canvas.mouseReleased = self.releaseCallback

frame.contentPane.add(canvas)
frame.pack()
frame.show()

def pressCallback(self, event):
self.startx = event.x
self.starty = event.y

def releaseCallback(self, event):
graphics = event.source.graphics
graphics.drawLine(self.startx, self.starty, event.x, event.y)
if _name__=="__main__":
draw = Draw()

Sunday, September 8, 13 17

Georgia
Tech

Example of O-O Event Handling

import javax.swing as swing

class Draw:
def __init__(self):
frame = swing.JFrame("Simple Drawing Program")
canvas = swing.JPanel()
canvas.preferredSize = (400, 400)

canvas.mousePressed = self.pressCallback
canvas.mouseReleased = self.releaseCallback

frame.contentPane.add(canvas)
frame.pack()
frame.show()

def pressCallback(self, event):
self.startx = event.x Record of last X,Y positions are stored in the Draw
self.starty = event.y object. Not easily visible outside the object, easily shared
among just these callbacks.
def releaseCallback(self, event):
graphics = event.source.graphics
graphics.drawLine(self.startx, self.starty, event.x, event.y)
if _name__=="__main__":
draw = Draw()

Sunday, September 8, 13 18

Objects As a Structuring Georgia | ese:
R Tech || e
Principle

® Very often, the data in your program will have a natural structure

® In a drawing program, each drawing window will have its own
contents, current mode, etc., that is not shared by any other open
windows

All of this information can be grouped together into a DrawingWindow
object

One DrawingWindow object per open window
No need to make the information needed by it global

® |n a chat program, each ongoing chat has its own list of users, and
its own message history

The user list, history, etc., could be grouped into a Chat object
One Chat object per ongoing chat

No need to make all of this information global

Sunday, September 8, 13 19

000
o000
) o000
Georgia | eee
Tech : ®

Creating Objects

® Where do new objects come from!?

® In an event-driven program, they usually are created in response to
events!

® Example:
User clicks “New Chat” button in GUI

Callback creates a new Chat object to represent the details of that
chat

def newChat(event):
chat = Chat()

chat.users = [me, buddyList.selectedValue]

Sunday, September 8, 13 20

(XY
o000
) o000
Georgia | eeo
Tech : o

Managing Global State Effectively

® Some times, you really do need to store some stuff globally
allMyChats=[]
def newChat(event):
chat = Chat()
chat.users = [me, buddyList.selectedValue]
allMyChats.append(chat)

® Useful idiom: keep track of objects through global data structure
Lists and Dictionaries are very helpful here
Use Lists for simple, ordered collection of stuff
Use Dictionaries when there’s a natural identifier for stored objects

Extra bonus: since you update a collection by invoking a method on it
(and not assigning to it), you avoid some of the scoping problems/
accidents we talked about last week

Sunday, September 8, 13 21

Lab Time!

Georgia
Tech

Sunday, September 8, 13

