

Asynchronous Programming

1Sunday, September 8, 13

Turn-in Instructions

 A “main” file, called gui.py
 See previous slides for how to make it “main”
 I’ll run it from the command line

 Put in a ZIP file, along with any additional needed files
 Name the ZIP file your_last_name.zip
 Submit via t-square, using the t-square submission text box to

provide details on:
 Anything special we need to do to run it
 What platform you developed/tested it on
 Anything else you think we should know

2Sunday, September 8, 13

Asynchronous Programming

3Sunday, September 8, 13

Asynchronous Programming

 Probably the most used idiom for interactive systems
 Why? Interactions with the real world

 Must be prepared to respond to events external to your program
 You don’t know when these might occur
 They may come from multiple sources (a user, remote users, sensors,

hardware devices)

 Also, the single biggest mind-shift away from doing simple “straight
line” programs

 A few canonical examples:
 GUIs (responsive to mice, keyboard)
 Systems that interact with hardware (interrupts)
 Collaborative tools (multiple users, each doing their own thing)

4Sunday, September 8, 13

Asynchrony and Modularity

 First-time programmers:
 Try to do everything “in line” in one flow of control
 Works only for trivial problems
 How would you do an “in line” program that needs to respond to

multiple event sources?
 N.B.: It’s actually possible. In fact, it’s one of the ways that asynchronous

programming works “under the hood.” We’ll talk about it later in the
semester.

 Asynchronous programming requires that you break your program
down into pieces that are invoked independently whenever any
external event happens

 Modularity

5Sunday, September 8, 13

Modularity is a Good Thing

 Fortunately, modularity is a good goal anyway
 Break apart code into more manageable chunks (abstraction)
 Keep the entanglements between chunks as simple as possible

(encapsulation)
 Corollary: keep as few things global as possible

 Treat each chunk as a “black box” that does a simple thing, and does it
well (information hiding)

 Object-oriented programming is modularity on steroids (an
oversimplification)

 Modularity is important when even one person is working on it
 Easier to conceptualize the entire system; chunk behavior into building

blocks, etc.

You can’t make complexity go away completely, but you
can learn techniques to manage it!

6Sunday, September 8, 13

Thinking Asynchronously
 Asynchronous: things can happen at arbitrary times
 Your program will probably have two types of code in it:

 Set-up code, that gets the initial windows on the screen, does
initialization, etc.

 A collection of program chunks that respond to particular types of
events that occur

 Some terminology:
 An event is some external occurrence
 The asynchronously-callable program chunks are event handlers
 An event dispatcher is the thing that calls your event handlers; it is

typically provided by the system (language, library, OS, ...)
 Your set-up code will install your various event handlers, so that the

event dispatcher will know which ones to call
 Much of your program’s logic will reside in the event handlers!

7Sunday, September 8, 13

Common Idiom: GUI Callbacks

 In many GUI systems, event handlers are called callbacks
 These are just functions that will be invoked when an event occurs
 Typically, they take a predefined set of arguments (what event

happened, etc.)
 They are parts of your program that get called back when something

happens
 How you associate your specific callback with a particular type of

event depends on the particulars of the dispatch system

8Sunday, September 8, 13

Example: GUI Callbacks in Jython
with Swing

import javax.swing as swing

def callback(event):

print “Button was pressed: “, event

window = swing.JFrame(”CS6452”)

button = swing.JButton(”Press Me!”)

button.actionPerformed=callback

window.contentPane.add(button)

window.pack()

window.show()

Results:
Button was pressed:
java.awt.event.ActionEvent[ACTION_PERFORMED,cm
d=Press Me!,when=72985371,modifiers=Button1] on
javax.swing.JButton[,
0,0,87x29,layout=javax.swing.OverlayLayout,alignmentX
=0.0,alignmentY=0.5,border=apple.laf.AquaButtonBorde
r@eb1670,flags=296,maximumSize=,minimumSize=,pre
ferredSize=,defaultIcon=,disabledIcon=,disabledSelecte
dIcon=,margin=javax.swing.plaf.InsetsUIResource[top=3
,left=14,bottom=3,right=14],paintBorder=true,paintFocus
=true,pressedIcon=,rolloverEnabled=false,rolloverIcon=,
rolloverSelectedIcon=,selectedIcon=,text=Press
Me!,defaultCapable=true]

9Sunday, September 8, 13

The Details of Event-Based
Programming in Swing

 In Swing, events are generated based on user input
 Mouse clicks, movement, release
 Key presses, releases
 Combinations of all of the above

 Each widget gets to define what constitutes an event for it, and how
callbacks will be associated with it
 button.actionPerformed
 list.valueChanged

 Any given widget may allow multiple kinds of callbacks to be
associated with it
 panel.mousePressed
 panel.mouseReleased
 panel.mouseClicked

10Sunday, September 8, 13

The Details of Event-Based
Programming in Swing (cont’d)

 Event dispatcher calls your code when the appropriate combination
of user inputs occurs

 Passes an event argument to your code
 Specific details contained in the event depend on type of callback:

 button.actionPerformed ActionEvent
 source: the widget that generated the event
 timestamp: when the event occurred
 modifiers: which keys were held down when the event occurred

 list.valueChanged ListSelectionEvent
 firstIndex: first index of changed item
 lastIndex: last index of changed item

 To get specific details of any given event type, look at the Java
documentation (http://java.sun.com/j2se/1.5.0/docs/api/) or ask me or
the TA

11Sunday, September 8, 13

http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/

The Details of Event-Based
Programming in Swing (cont’d)

 You can call your callbacks yourself
 They’re just normal functions
 Simulate what happens when user input occurs

 Make sure you return quickly from your event handlers!
 The program is waiting until you finish so that it can continue running
 Common signs of a non-returning callback:

 Program appears to freeze
 Program window doesn’t redraw
 Buttons become inactive

12Sunday, September 8, 13

O-O and Asynchronous
Programming

 Simple callbacks are a perfectly acceptable idiom; they’re the
“baseline” of asynchronous programming

 If you do much callback programming, though, you begin to notice
some common patterns:
 Often need to share some data across several related callbacks
 Often need to keep track of what happened the last time you ran the

callback
 There’s a group of variables and related functions that are used only by

the callback

13Sunday, September 8, 13

An Example
import javax.swing as swing

startx = 0
starty = 0

def pressCallback(event):
 global startx, starty
 startx = event.x
 starty = event.y

def releaseCallback(event):
 global startx, starty
 graphics = event.source.graphics
 graphics.drawLine(startx, starty, event.x, event.y)

if __name__ == "__main__":
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)
 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 canvas.mousePressed = pressCallback
 canvas.mouseReleased = releaseCallback

14Sunday, September 8, 13

O-O and Asynchronous
Programming (cont’d)

 Last mouse-down position needs to be remembered until the next
time the callback is invoked
 Can’t save in a local variable, as it will be reset each time the callback is

invoked
 Option #1: keep all of this cross-callback information in global

variables
 Why is this a bad idea?

 The information is specific to the drawing callbacks; nothing else should
use it

 Can’t have multiple widgets of same kind (one set of variables!)
 By making it global, you increase program clutter, and the mental cycles

needed to manage it
 Worse: you run the risk that someone (you?) will misunderstand what

the global variables are for, and reuse them for something else

15Sunday, September 8, 13

O-O and Asynchronous
Programming (cont’d)

 The principle of data hiding:
 Keep data as “close” to the behavior it controls as possible
 Keep it inaccessible to everything else that doesn’t need to use it

 The more of the inner workings of something you expose, the
more likely it is to be used in the wrong way

 Option #2: object-oriented programming provides a nice way to
handle this:
 Each handler is an object that contains whatever information is

necessary for it to execute properly
 Internal state is not visible outside the handler object
 Well-designed objects will allow the user to use them only in the way

they were intended

16Sunday, September 8, 13

Example of O-O Event Handling
import javax.swing as swing

class Draw:
 def __init__(self):
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)

 canvas.mousePressed = self.pressCallback
 canvas.mouseReleased = self.releaseCallback

 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 def pressCallback(self, event):
 self.startx = event.x
 self.starty = event.y

 def releaseCallback(self, event):
 graphics = event.source.graphics
 graphics.drawLine(self.startx, self.starty, event.x, event.y)

if __name__ == "__main__":
 draw = Draw()

17Sunday, September 8, 13

Example of O-O Event Handling
import javax.swing as swing

class Draw:
 def __init__(self):
 frame = swing.JFrame("Simple Drawing Program")
 canvas = swing.JPanel()
 canvas.preferredSize = (400, 400)

 canvas.mousePressed = self.pressCallback
 canvas.mouseReleased = self.releaseCallback

 frame.contentPane.add(canvas)
 frame.pack()
 frame.show()

 def pressCallback(self, event):
 self.startx = event.x
 self.starty = event.y

 def releaseCallback(self, event):
 graphics = event.source.graphics
 graphics.drawLine(self.startx, self.starty, event.x, event.y)

if __name__ == "__main__":
 draw = Draw()

Record of last X,Y positions are stored in the Draw
object. Not easily visible outside the object, easily shared
among just these callbacks.

18Sunday, September 8, 13

Objects As a Structuring
Principle

 Very often, the data in your program will have a natural structure
 In a drawing program, each drawing window will have its own

contents, current mode, etc., that is not shared by any other open
windows
 All of this information can be grouped together into a DrawingWindow

object
 One DrawingWindow object per open window
 No need to make the information needed by it global

 In a chat program, each ongoing chat has its own list of users, and
its own message history
 The user list, history, etc., could be grouped into a Chat object
 One Chat object per ongoing chat
 No need to make all of this information global

19Sunday, September 8, 13

Creating Objects

 Where do new objects come from?
 In an event-driven program, they usually are created in response to

events!
 Example:

 User clicks “New Chat” button in GUI
 Callback creates a new Chat object to represent the details of that

chat

def newChat(event):
chat = Chat()

chat.users = [me, buddyList.selectedValue]

20Sunday, September 8, 13

Managing Global State Effectively
 Some times, you really do need to store some stuff globally

allMyChats=[]

def newChat(event):

chat = Chat()

chat.users = [me, buddyList.selectedValue]

allMyChats.append(chat)

 Useful idiom: keep track of objects through global data structure
 Lists and Dictionaries are very helpful here
 Use Lists for simple, ordered collection of stuff
 Use Dictionaries when there’s a natural identifier for stored objects
 Extra bonus: since you update a collection by invoking a method on it

(and not assigning to it), you avoid some of the scoping problems/
accidents we talked about last week

21Sunday, September 8, 13

Lab Time!

22Sunday, September 8, 13

