

Distributed Applications

Week 7

Sunday, September 22, 13

Design Principles for Distributed
Applications

“A Distributed Application is a system in which the crash of a machine
you’ve never heard of can cause your program to break.”

~ Famous Quote, sometimes attributed to Peter Deutsch

Sunday, September 22, 13

Design Principles for Distributed
Applications

 First step: getting the protocol right
 What’s the right protocol?
 One that’s:

 Inherently reliable: either party can tell if something’s gone wrong
 Easily parseable: simple to write clients and servers
 Highly efficient: requires sending as few messages as possible
 Structurally simple: easy to debug

Sunday, September 22, 13

The Eight Fallacies of Distributed
Computing

 Definitely attributed to Peter Deutsch
 Assumptions that people make that result in bad distributed

applications:
 The network is reliable
 Latency is zero
 Bandwidth is infinite
 The network is secure
 Topology of the network doesn’t change
 There is one administrator
 Transport cost is zero
 The network is homogeneous (Gosling)

Sunday, September 22, 13

What This Means in Practice:

The network is reliable
Don’t assume that data you send will be received,
that a server or client you’re talking to will always be
alive, etc.

Latency is zero It takes time for a recipient to get your message!
Don’t assume transmission is instantaneous.

Bandwidth is infinite You must make messages as small as possible.

The network is secure Don’t assume that clients that connect to you will
have good intentions. Guard against evil!

Topology of the network doesn’t change
Don’t assume that hosts will retain the same IP
address; don’t assume that routes between hosts
won’t change

There is one administrator You can’t “reboot” the Internet, to upgrade clients
and services to a new protocol at the same time.

Transport cost is zero
Sending bytes across a network is expensive, relative
to doing local computation. Trade computation for
transmission whenever possible.

Sunday, September 22, 13

Why It’s Important to Get It
Right the First Time!

 Once you deploy a service (for real), the protocol is largely set in
stone
 Why? Because if you change it, you have to change every other client in

existence to speak the new protocol
 HTTP is only at version 1.1 (which came out early...), and will likely

never see 1.2
 The protocol, to a large extent, determines what you can build on

top of it
 Example: in our IM system, impossible to (easily) send text before the

chat is created... because the protocol doesn’t support it
 Example: in most email systems, impossible to “retract” a sent

message... because the SMTP protocol doesn’t support it
 You can fake certain things, but often difficult. The underlying

infrastructure constrains what you can build on top of it

Sunday, September 22, 13

Common Protocol Design
Idioms

 Request/response/notification
 Client sends a request
 Server replies with a response
 Server may also send notification asynchronously

 Often uses a sequence number at the front to allow easy message
processing, pipelining of requests and responses

 Example:
 Client sends request 101, request 102, request 103, ...
 Server replies with response 101, response 102, response 103, ...
 Allows clients to have multiple requests “in flight” at once, pair up

responses as they come in

Sunday, September 22, 13

Common Idioms for Delimiting
Messages

 “Stuffing”
 Example: SMTP: each header on a line by itself, multiline data begins with “DATA” and ends with

“.”

 Client: you don’t need the entire message assembled before you start sending it
 Server: easy to process, but also slow to process: you have to “look” at every line to see if

you’re at the end.

 “Counting”
 Example: HTTP: messages indicate how many bytes they contain

 Client: need to know the length of the entire message before you can send it

 Server: don’t need to examine every byte to process it; just get the length and read this much

 “Blasting”
 Example: FTP: open an entirely new socket for sending a file; blast the file across and

then close it

 Client: no need for parsing at all

 Server: no need for parsing at all. Expensive if you’re sending lots of small files
though (need to set up, tear down socket for each one)

Sunday, September 22, 13

Common Idioms for ASCII
Encoding

 Most ASCII-encoded protocols are line oriented
 Example: SMTP

 Textual headers (FROM, SUBJECT, DATE, etc.)
 Each header consists of name : value followed by a carriage return
 Message body starts with DATA, then message body, then a “.” on a line

by itself to terminate
 If message body contains “.” on a line by itself anyway, it’s replaced by

“..” and then decoded on the receiver
 HTTP uses essentially the same format
 Very easy to parse, as long as you’re not sending complex data

types
 Very easy to debug

Sunday, September 22, 13

Common Idiom: Reply Codes

 Reply messages from a server often contain structured codes to
indicate what happened.

 Defined as a part of the protocol spec, intended to allow very easy
parsing

 SMTP: 3 digit codes at start of replies
 1st digit: success or failure
 2nd digit: the subsystem of the mail server that is responding
 3rd digit: the situation that occurred

 HTTP: same deal
 Error 404 anyone?

Sunday, September 22, 13

Debugging ASCII-Oriented
Protocols

 You can telnet to a server that speaks an ASCII protocol to talk to it
directly

telnet www.cc.gatech.edu 80
Trying 130.207.7.237...
Connected to rhampora.cc.gatech.edu.
Escape character is '^]'.
GET /index.html HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 16 Feb 2005 14:55:22 GMT
Server: Apache/2.0.46 (Unix) mod_ssl/2.0.46 OpenSSL/0.9.7a
Last-Modified: Mon, 14 Feb 2005 12:01:38 GMT
ETag: "e97772-7573-69118c80"
Accept-Ranges: bytes
Content-Length: 30067
Connection: close
Content-Type: text/html

<HTML><HEAD><TITLE>Georgia Tech - College of Computing</TITLE><META

Blank line indicates end of request

Sunday, September 22, 13

http://www.cc.gatech.edu
http://www.cc.gatech.edu

Protocol Design Techniques

 “Lo-fi prototypes for protocols”
 Fence sketches
 Shows interactions among hosts involved in a protocol exchange
 Time starts at the top of the sketch, goes down
 There’s even software to create these for you

Sunday, September 22, 13

Examples

ServerClient Client

INVITE

INVITATION
INVITATION

SEND_MESSAGE

MESSAGE
MESSAGE

Sunday, September 22, 13

Dealing With Errors

Sunday, September 22, 13

Networking Errors, Other
Errors

 From last week: defensive programming
 Would like to ensure that a server can’t crash your client
 Would like to ensure that a client can’t crash your server

 How do you do this?
 One good tool: exceptions
 Built into the Jython language

 Also available in some form in many other languages: Java, C++, ...

Sunday, September 22, 13

What Are Exceptions?

 A way to skip out of an arbitrarily large chunk of code when an
error happens

 Sort of a structured “super-goto”
 Any sort of runtime error that happens in your program may raise

an exception
 Meaning: it’s telling you that something has gone wrong

 By default, exceptions are not caught
 Meaning: they simply cause your program to quit

 Jython provides a way for you to catch these exceptions, and handle
them with your own code
 Meaning: you can write code to recover from errors that may occur

 Exceptions are not just for network programming! All sorts of
errors cause exceptions to be raised!

Sunday, September 22, 13

Example

list = [1, 2, 3]
print list[158]

Traceback (innermost last):
 File “<console>”, line 1, in ?
IndexError: index out of range: 158

 This message is telling you than an exception--called IndexError--was
raised, but not caught

Sunday, September 22, 13

Example with Exceptions

list = [1, 2, 3]
try:
 print list[158]
except IndexError:
 print “Dummy! You used a bogus index!”

Dummy! You used a bogus index!

Sunday, September 22, 13

Anatomy of an Exception

 New keyword: try
 Specifies the start of a block of code that might cause exceptions you’d like to

handle

 New keyword: except
 Specifies the end of the block of code that might cause exceptions, and the

beginning of your exception handler

 There are different types of exceptions.
 Example: IndexError caused by list index out of bounds
 Other operations define their own types of exceptions
 You specify in the except statement which types you’re handling

 If an exception is raised, control passes to the handler, and then to the
next statement after that

 If no exception is raised, control continues to the except keyword, then
skips the except clause, then continues to the next statement after that

Sunday, September 22, 13

What Good Does This Do You?

 In the previous example, not much
 The index problem was a logic error, caused by an actual bug in the

program
 Pretty much you’d just want to exit; the developer will need to find and

fix the bug to make the program right

 Other sorts of exceptions are not caused by logic errors though
 Examples:

 You’re trying to connect to a server and the server is down
 You’re trying to write to a server and it crashes

 Caused not by bugs in your program, but by changes in the external
situation

Sunday, September 22, 13

More Exception Syntax

 Syntax of except statement:
 except ExceptionType, exceptionInstance

 except: keyword in the Jython language
 ExceptionType: indicates the type (class name) of the exception you

want to catch
 Can just use “Exception” as the type to catch everything
 Can have multiple except statements, each of which catches a different

type of exception
 exceptionInstance: an object that provides more details about the

exception
 Optional
 Use it to print out more details about what specifically went wrong

Sunday, September 22, 13

A More Realistic Example

import sys

import java.net as net

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

success = 0

while not success:

 # let the user type in a hostname. They might type something bogus!

 hostname = sys.stdin.readline()

 try:

 s.connect((hostname, 80)) # try to connect

 success = 1 # if no exception, we were successful

 except net.UnknownHostException: # if the name is bogus, we’ll get an exception

 print “The hostname you entered,” hostname, “is not valid.”

Sunday, September 22, 13

Detecting Read/Write Errors

 socket.send(), socket.recv() raise java.net.SocketException if they fail

import java.net as net
try:
 socket.send(”hello”)
except net.SocketException, ex:
 socket.close()

 print “Error while trying to send data:” + str(ex)
 # do whatever other cleanup is necessary here

Sunday, September 22, 13

Good Design When Using
Exceptions
 In general, wrap any operations that commonly fail: opening files, socket

calls, etc.
 If there’s no way you could ever possibly recover--and the only suitable

response is to exit--then you could just let the default exception handler
be used

 If you’ve got a function that might raise lots of exceptions, may be better
to wrap the call to the function, rather than having lots of handlers inside
the function

 Don’t catch too much: you don’t want to catch exceptions that flag
programmer errors

24

Sunday, September 22, 13

