

Distributed Applications
Networking Basics

Sunday, September 22, 13

What is a “Network?”

 Depends on what level you’re at
 One person’s “network” is another person’s “application”
 OSI Seven Layer Model

 The physical wire itself
 Ethernet, 802.11b
 Routing protocols
 ...

7. Application FTP, HTTP,
SMTP, etc.

6. Presentation

FTP, HTTP,
SMTP, etc.

5. Session

FTP, HTTP,
SMTP, etc.

4. Transport TCP

3. Network IP

2. Data Link ARP, RARP

1. Physical Ethernet

Sunday, September 22, 13

For Our Purposes: The Internet

 We’re application programmers
 In terms of OSI, we’re defining/using

our own application-layer protocol
 Sits atop TCP/IP, the lingua franca

of the Internet
 For almost every networked

application you will ever want to
build, this will be the lowest layer
in the stack you’ll need to care
about

7. Application FTP, HTTP,
SMTP, etc.

6. Presentation

FTP, HTTP,
SMTP, etc.

5. Session

FTP, HTTP,
SMTP, etc.

4. Transport TCP

3. Network IP

2. Data Link ARP, RARP

1. Physical Ethernet

Sunday, September 22, 13

Topology of the Internet

My Home Network

gatech.edu

google.com

Sunday, September 22, 13

Some Terminology: Protocols

 Protocols: rules that facilitate information exchange among
programs on a network
 Example from human world: “roger” and “over” for radio geeks

 Similar to how you design the interfaces between objects in your
program
 A callback expects to get a certain set of parameters in a certain order
 You need to know this in order to use the callback

 Likewise:
 A networked program expects you to communicate with it in certain

ways (using certain messages, in a known format)
 You need to know this in order to use the program

Sunday, September 22, 13

Some Terminology: Servers

 Server: a (generally) long-lived program that sits around waiting
for connections to it
 Examples: web server, mail server, file server, IM server

 “Server” implies that it does something useful (delivers a service)
 Web server: provides access to HTML documents
 Mail server: allows retrieval, sending, organization of email messages
 File server: provides remote access to files and directories
 IM server: provides info about online users, passes messages between

them

Sunday, September 22, 13

Some Terminology: Clients

 Client: a program that connects to a server to use whatever
service it provides
 Examples:

 Web browser connects to web servers to access/view HTML
documents

 Mail client (Outlook, etc.) connects to mail servers for mail storage,
transmission

 IM clients connect to IM servers to access info about who is on, etc.

 Most servers can be connected to by multiple clients at the same
time

Sunday, September 22, 13

Some Terminology: Host

 Host: Simply a machine that’s connected to the network
 Generally running clients and/or servers

 The machine “hosts” a server

Sunday, September 22, 13

The Next Phase of the Project

 We’ll be building the networking part of the IM program
 Enhancing the GUI code to talk to an an IM server on the network

 For the IM assignment:
 I’ll provide a sample IM server, and documentation on its protocol

 Important concept: understanding a protocol specification
 Useful for when you want to write a program that talks to an existing server (and thus

has its own existing, documented protocol)
 Side concept: designing your own protocols

 We’ll talk about this, but won’t do it for the project (unless you want to go nuts and get all
fancy...)

 Should give you experience in using basic Internet-style networking, debugging, etc.

Sunday, September 22, 13

What Will You Have to Do?

1. Connect to the other machine(s)
 Know how to refer to it: which machine do you want to connect to?
 Know how to perform the connection
 Know how to deal with errors (server is down, etc.)

2. Send messages to it (e.g., “I’m online now!”)
 Know how to “marshall” arguments
 Know how to do the transmission
 Know how to deal with errors (server crashed while sending, etc.)

3. Receive messages from it (e.g., list of online users)
 Know how to “unmarshall” arguments
 Know how to read data
 Know how to deal with errors (e.g., got unexpected data from server, etc.)

4. Disconnect from it
 This is the easy part!

Sunday, September 22, 13

Why All the Focus on Errors?

 Networking in inherently error-prone
 Different than single application programming

 Errors generally result from a bug, and just crash entire program
 Networking: errors may be caused by reasons outside of your

control
 Network is down, server has crashed, server slow to respond, etc.
 During a chat I could shut my laptop and walk away
 Someone could trip over the power cord for an access point
 Networks can’t even guarantee that messages will get from A to B

 Good goal: robustness
 Your program should survive the crash of another program on the

network, receiving malformed data, etc
 “Defensive programming”

Sunday, September 22, 13

Networking 101

Sunday, September 22, 13

Internet Addressing

 Every machine on the Internet has an address
 Internet addresses are sequences of 4 bytes

 Usually written in “dotted quad” notation
 Examples: 192.168.13.40, 13.2.117.14

 Addresses identify a particular machine on the Internet
 Example: 64.223.161.104 is the machine www.google.com

 One special address
 127.0.0.1
 localhost
 Refers to the local machine always

Sunday, September 22, 13

http://www.google.com
http://www.google.com

Where do IP Addresses Come
From?

 You can’t just set your IP address to any random value and have it
work
 The rest of the Internet won’t know how to reach you
 You have to use values that are compatible with whatever network

you’re on
 In most cases a service called DHCP will take care of this for you

 Dynamic Host Configuration Protocol
 Assigns you a valid IP address when you boot your machine, wake your

laptop, etc.
 E.g., LAWN at Georgia Tech
 IP address may change from time to time: in other words, don’t count

on this being your address forever

 If DHCP isn’t available, you may have to set your IP address by
hand, but only with a value provided by an administrator

Sunday, September 22, 13

Why Do You Need to Know
This?

 First off: don’t change your IP address for this class!
 You can only do harm!

 Second: if you get an address from DHCP (which you probably do),
you can’t count on having this address forever
 So don’t hard-code it into any programs

 Third: if you want to debug clients and servers on the same
machine, you can use the localhost address
 But don’t hardcode this either, since it would keep you from working

when client and server are on different machines

Sunday, September 22, 13

Public Versus Private Addressing

 Not all IP addresses may be reachable from any given machine
 Simple case: machines behind a firewall

 Example: my old machine at PARC was 13.1.0.128, but only reachable
from within PARC

 More complex case:
 Some IP addresses are private (also called non-routable)
 Three blocks of addresses that cannot be connected to from the larger

Internet
 10.0.0.0 - 10.255.255.255
 172.16.0.0 - 172.31.255.255
 192.168.0.1 - 192.168.255.255

Sunday, September 22, 13

Why Private Addresses?

 Two reasons: IP address conservation and security
 Public addresses uniquely define a given machine

 There’s a limited number of these, and they’re running out
 Private addresses can be reused (although not on the same network)

 Probably hundreds of thousands of machines with 192.168.0.1 on
private networks (corporation internal, homes, etc.)

 Certain network configs let you share a single public IP address across
multiple private machines
 Network Address Translation
 Built into most home routers

 E.g., BellSouth gives me the address 68.211.58.142

 My router gives my home machines 192.168 addresses

 Connections out are translated so that it looks like they come from 68.211.58.142

 Internal machines are “invisible” since they have non-routed addresses

Sunday, September 22, 13

Why Do You Need to Know
This?

 Servers running on machines with private IP addresses are not
reachable from machines not on that network
 Ok if you’re running your client and service on the same network
 Ok if you’re running your client and service on the same machine
 Not ok if, e.g., your server is at home and you client is at Georgia Tech

 Aside: this is the reason that many people pay for an extra “static” IP
address at home--so that they can run servers that have a fixed IP
address that is visible throughout the Internet

Sunday, September 22, 13

Naming

 When you go to a web browser, you don’t type in 64.223.161.104,
you type in www.google.com

 The Domain Name Service
 A big distributed database of all the machines on the Internet
 Each organization manages its own little portion of it
 Maps from host names to IP addresses

 Ultimately, the Internet runs on IP addresses. Names are a
convenience for humans
 When you type www.google.com, the browser resolves that name to an

IP address by talking to a DNS server
 If name resolution can’t be done (DNS is down; you’re not connected to

the network), then browsing will fail

Sunday, September 22, 13

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com

Naming Configuration

 Much like IP addressing, you may not have much control over the
DNS name for your machine
 In general, you won’t have a name resolvable by DNS, even if your

machine has a “local” name
 In the CoC, CNS sets up DNS names for the machines they

administer, mapping them to fixed IP addresses
 If you were to take these machines to different networks (where they

get different IP addresses), those names would no longer work
 Resolve to the incorrect address

 Personally owned machines, even if they get an IP address from DHCP,
generally get sucky names, if they get a name at all
 Example: lawn-199-77-214-212 on my laptop

Sunday, September 22, 13

Why Do You Need to Know
This?

 General all-around erudition and cocktail party conversation :-)
 Even though we’re used to using names to refer to machines on the

Greater Internet, you’ll probably be reduced to using IP addresses
for this assignment

 We may be able to run a server on a well-known machine,
administered by TSO, in which case you’d be able to specify it by
name

Sunday, September 22, 13

Ports

 What if you’ve got multiple servers running on a single host?
 E.g., a machine might have a web server, mail server, FTP server, ...

 When you tell a client to connect to a given machine, how does it
know which server running on that machine to talk to?

 Ports: Let you address different servers running on the same
machine
 Think of IP addresses as the street address for an apartment building
 Ports specify the individual apartments

 Ports are just numbers that range from 0-65,535

Sunday, September 22, 13

More On Ports
 Back to the question: when I type www.google.com into my browser...

 It knows to go to 64.233.161.104

 But how does it know which is the port for the google web server?

 Well-known ports: certain common Internet services use standard port
numbers:
 Web servers: port 80

 FTP servers: port 21

 Terminology: we say that the FTP server runs on port 21, meaning that this is
the port at which it is waiting for clients to connect to it

 Reserved ports: ports 0-1024 reserved for privileged programs
 Servers specify which port they run on when they start
 Clients specify both the IP address of the desired host, and the port number,

when they connect to a server
 Clients outgoing connections also have a port, but generally you don’t need to

know what it is
 Only one client or service can run on a port at any given time

Sunday, September 22, 13

http://www.google.com
http://www.google.com

Why Do You Need to Know
This?

 If you’re writing a client for an existing service, you’ll have to know
what port is is running on in order to connect to it

 If you write a service, you’ll need to run it on a port that will be
known by its clients
 Can be a fixed port number that you decide on, and tell your clients
 Can let the system assign you a random one, but then you’ll need some

way to communicate this to clients

 You can’t choose ports in the reserved range
 Good practice is to use relatively high numbers (e.g., 5,000 -

50,000)

Sunday, September 22, 13

Network Programming 101

Sunday, September 22, 13

Basic Network Programming

 One unified concept for dealing with the network at the Internet
layer: sockets

 Basically similar across all platforms (Java, C, Python, etc.)
 De facto standard (slight differences across platforms, languages)
 So what’s a socket?

 An endpoint for communication
 May be connected to another endpoint, in another program on the net
 Lets you read from it and write to it, much like a file
 Adds some additional operations specific to networking

Sunday, September 22, 13

Network Programming from the
Client’s Perspective

1. Create a socket
2. Bind it to an address on a client machine

 Both endpoints of a communication have addresses, including ports

3. Connect it to the server, by specifying its address and port
 This call blocks until the connection is successful, or times out

4. Read and write to and from the socket, to get and send data
5. Close the socket when you’re done with it

Sunday, September 22, 13

Network Programming from the
Server’s Perspective

1. Create a socket
2. Bind it to an address on the server machine

 This sets the port for the socket

3. Listen for incoming connections
4. Accept any connection that comes in.

 This call blocks until a new connection comes in
 This produces a new socket, paired with the client, and just for

communication with that client
 This socket can be read, written, and closed independently from the

socket used for any other client
 Meanwhile, original listening socket can go back to listening
 Allows you to have multiple ongoing client connections at one time

5. Close the listening socket when you’re done accepting connections

Sunday, September 22, 13

Example: Basic Socket
Programming in Jython

Need to import the socket module before doing anything:

import socket

How to create a socket (for both clients and servers):

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

How to connect to a server (if you’re a client):

s.connect((”192.168.2.54”, 45235))

How to bind to an address, listen for connections and accept them (if you’re a server):

s.bind((“”, 45235))

s.listen(5)

newSock, clientAddress = s.accept()

How to send and receive data (both clients and servers):

s.send(”hello world”)

reply = sa.recv(1024)

How to close a socket (both clients and servers):

s.close()

Note double parentheses!
This is because connect() takes a single tuple as an
argument; this tuple contains the address and port.
(The inner set of parentheses wraps the arguments in
a tuple.)

Note double parentheses!
Same with bind()

Sunday, September 22, 13

Writing a Simple Server
(All of this code is on the web site, as net-sampler.py)

import socket
import sys

class SimpleServer:
 def __init__(self, port):
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 self.sock.bind(('', port))
 self.sock.listen(5)
 while 1:
 requestSock, peerAddress = self.sock.accept()
 print "Accepted connection from", peerAddress
 while 1:
 input = requestSock.recv(1024)
 if not input:
 print "Peer closed connection"
 break
 requestSock.send(input)

 requestSock.close()

if __name__ == "__main__":
 port = 7777
 if len(sys.argv) > 1:
 port = sys.argv[1]
 server=SimpleServer(port)

Sunday, September 22, 13

Writing a Simple Client
import socket
import sys

class SimpleClient:
 def __init__(self, serverAddr, serverPort):
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.connect((serverAddr, serverPort))

 def sendToServer(self, message):
 self.sock.send(message)
 return self.sock.recv(1024)

 def close(self):
 self.sock.close()

if __name__ == "__main__":
 if len(sys.argv) != 3:
 sys.exit(1)
 else:
 client = SimpleClient(sys.argv[1], int(sys.argv[2]))

 while 1:
 string = sys.stdin.readline()
 if string == "close\n":
 client.close()
 sys.exit(0)
 else:
 response = client.sendToServer(string)
 print "Server replied '", response, "'"

Sunday, September 22, 13

Extra Useful Tricks

 Figuring out what you’re connected to:
 s.getpeername() returns a tuple of (address, port) indicating what

you’re connected to (or what has connected to you)
 Figuring out your local address:

 s.getsockname() returns a tuple of (address, port) indicating your local
address. Useful when you need to know what port your service is on

 Making life easier:
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 Tells the OS that it’s ok to reuse a port number
 Example: you find a bug, kill your server, fix it, and restart
 Without this call, OS may prevent the port from being reused until

some timeout expires

Sunday, September 22, 13

Multi-threaded Servers

 Problem with previous simple server:
 While it’s processing requests from one client, every other client must

queue up
 Only when first client dies does the next one in the queue get handled

 Bad, since most servers should support connections by multiple
clients at the same time

 Common approach: multi-threaded servers
 One thread to hang around waiting for clients to appear
 One thread to handle each client; terminates when client is done

Sunday, September 22, 13

Multi-Threaded Server Example
import socket
import sys
import threading

class MTServer:
 def __init__(self, port):
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 self.sock.bind(('', port))
 self.sock.listen(1)
 while 1:
 requestSock, peerAddress = self.sock.accept()
 handler = Handler(requestSock)

class Handler:
 def __init__(self, requestSock):
 self.requestSock = requestSock
 self.thread = threading.Thread(target=self.handle)
 self.thread.start()

 def handle(self):
 while 1:
 input = self.requestSock.recv(1024)
 if not input:
 break
 self.requestSock.send(input)
 self.requestSock.close()

if __name__ == "__main__":
 port = 7777
 if len(sys.argv) > 1:
 port = sys.argv[1]
 server=MTServer(port)

Sunday, September 22, 13

Message Formatting

 Any messages you send to a server must be parseable by it
 Recipient must be able to decipher what you sent it
 Must know when it has reached the end of the message

 There are many ways of encoding messages

Sunday, September 22, 13

The Joy of ASCII

 Many protocols use a simple text-based encoding
 Example: HTTP

GET /index.html HTTP/1.0

 Example: SMTP

HELO rutabaga.cc.gatech.edu

MAIL From: Keith Edwards <keith@cc>

DATA

Hello there!

.

 Parameters and commands encoded using simple, regular format
 Marshalling: the process of gathering parameters and encoding them for

transmission
 Unmarshalling: the process of unpacking the received data for use by your program
 Goal should be machine parseability for ease of implementation; human parseability

for ease of debugging
Sunday, September 22, 13

More Complex Data

 What about very complex data?
 Example: marshalling an arbitrary Jython dictionary

 {”name”: “keith, “location”: (2.425, 1.783, 0.892), “info”: {”email”:
“keith@cc”, “phone”: 56783}, “buddies”: “[ralph”, “fred”, “betty”] }

 You could create a string representation that is parseable and
“rebuildable” on the other end

 Sometimes called flattening the dictionary to a string
 Parsing at the recipient can be very difficult
 Need to account for arbitrary objects that might be stored in

dictionaries (including custom-defined objects)

Sunday, September 22, 13

Is There an Easier Way?

 Most “standard” services just bite the bullet and use ASCII
 Perhaps with more complex formatting atop it, such as XML
 ASCII--since it’s universal--lets you program a client in any language

that speaks the necessary protocol

 The marshalling/unmarshalling of complicated parameters can be a
significant part of the complexity in dealing with a given service

 But: If you know you’ll only be working with clients in a particular
language, you can take some short cuts

Sunday, September 22, 13

Serialization

 Serialization is the process of automatically creating a representation
of complex data that can be shipped over the wire

 Generally built in to the programming language itself
 So: can work with custom-defined data types without special work by

the programmer
 Present in Java, Python, Jython, ...

 Opaque: with most of these systems, you don’t care what the on-
the-wire representation is
 Generally complex; generally non-ASCII
 System takes care of the chores of generating it, and parsing it

 Terminology: a serialization system is one approach to simplifying
the marshalling and unmarshalling of arguments

Sunday, September 22, 13

Serialization in Jython/Python

 Serialization provided by the pickle library
 You “pickle” objects for transmission over the wire

 Works for any Jython data type, including custom-defined objects
 However: some objects may “depickle” with data intact, but not behave

as expected
 Classic example: swing widgets

Sunday, September 22, 13

Sending Dictionaries Using Pickle

 On the sending side:
import pickle

dict = {”name”: “keith, “location”: (2.425, 1.783, 0.892), “info”: {”email”:
“keith@cc”, “phone”: 56783}, “buddies”: “[ralph”, “fred”, “betty”] }

data = pickle.dumps(dict)

s.send(data)
 On the receiving side:

data = s.recv(1024)

dict = pickle.loads(data)

Sunday, September 22, 13

Combining Pickling with Other
Techniques

 Pickled objects are opaque--you can’t easily parse the data yourself
But you generally don’t want/need to. Just unpickle it!

 Common approach is to create a data structure that represents the entire message
and pickle it
 Sender:

s.send(pickle.dumps((”Hello”, dict)))

 Receiver:

pickle.loads(s.recv(1024))

Sunday, September 22, 13

Instant Messaging Assignment

 Turn the GUI front end into a working network-ified program
 Grab the server off the class web page
 Understand the protocol it speaks
 Integrate it into your client

 Connect to the server
 Send messages to it in response to starting up, user events (such as

new chats), etc.
 Be prepared to receive messages from it

 Asynchronous notifications of online users: necessitates having a thread to
listen for messages!

 Responses to client-initiated messages (invitations, etc.)

Sunday, September 22, 13

Getting Started
 Get code off the web site: server.py
 Running the server

 jython server.py
 Will run on port 6666
 Generates a lot of debugging messages (don’t run under JES though)
 Look at the handle messages in the server if you need to see what it’s doing

 Create a client to connect to this port
 Start small! Create a new file net.py
 Generate a message to tell the server that you’re online
 Next, make the online user list “real”: thread to listen for incoming messages
 Debug by running multiple instances of the client (as different users)
 Pay attention to server debugging messages!
 Iron out the connection, messaging issues then integrate it

Sunday, September 22, 13

The IM Server Protocol

 Uses the “pickled argument list” approach
 Every message is a pickled list; first item is the “command”

 Clients announce themselves when they first start; server periodically sends
updated online user status

 Each chat has a unique ID that the server generates
 Clients only communicate with server, not each other

 Tell the server to invite, specifying desired users

 Server creates a chat, giving it a unique chat ID, and sending this ID back to the
initiator

 Server sends invitations to all clients, indicating the chat ID

 Clients accept or reject the invitation, providing the specified chat ID

 Clients tell server to send message to parties in a chat, by specifying both the
message and the chat ID

 Server propagates message to all members of the chat

 Clients can leave chats by specifying their ID

Sunday, September 22, 13

The IM Server protocol:
Basic status info

Client Server

HELLO

ONLINE_USERS

ONLINE_USERS

GOODBYE

Sunday, September 22, 13

The IM Server protocol:
Basic chat setup

Client 1 Server

INVITE

CHAT_ID

Client 2

INVITATION

ACCEPT (or REJECT)

JOINED (or DECLINED) LEAVE

LEFT

Sunday, September 22, 13

The IM Server protocol:
Sending text

Client 1 Server

SEND_MESSAGE

Client 2

MESSAGE

Sunday, September 22, 13

The IM Server Protocol

49

Messages from Server to Client Messages from Client to Server

[“ONLINE_USERS”, {user1: status1, user2: status2, ...}]
Sent by the server every 5 seconds to all clients to indicate
what users are online and their status. The parameter is a dict.

[“HELLO”, username, status]
Sent by client when it first starts; username and status are both
strings

[“CHAT_ID”, chatID, [invitee1, invitee2, ...]]
Sent in response to an invite, providing the initiating client with
the chatID. The invitees list allows the client to tell which chat
this ID is for.

[“GOODBYE”]
Sent by client when it shuts down

[“INVITATION”, invitor, [invitee1, invitee2, ...], chatID]
Sent by the server to invitees to a new chat. Invitor is a string that
indicates who started the chat; the invitees list indicates the other
invitees; chatID is an integer that identifies the new chat.

[“INVITE”, [user1, user2, ...]]
Sent by client to ask the server to invite a list of users to a new
chat. Each user name should be a string.

[“JOINED”, chatID, userName]
Sent to all members of a chat when an invitee (indicated by the
userName string) joins. chatID indicates the chat.

[“ACCEPT”, chatID]
Used to accept an invitation to chat. The client should provide
the chatID it is accepting; this is an integer.

[“DECLINED”, chatID, userName]
Sent to all members of a chat when an invitee (indicated by
userName) declines an invitation. chatID indicates the chat.

[“REJECT”, chatID]
Used to reject an invitation to chat. The client should provide
the chatID it is rejecting; this is an integer.

[“MESSAGE”, chatID, userName, message]
Sent to all members of a chat when a user sends a message.
chatID indicates the chat; userName indicates the sender; and
the message string is the message itself.

[“SEND_MESSAGE”, chatID, message]
Used to send a text message to the members in a chat. chatID
is an integer and message is the text to be sent.

[“LEFT”, chatID, userName]
Sent to all members of a chat when a member (userName)
leaves.

[“LEAVE”, chatID]
Used by a client when it wishes to leave the chat indicated by
the chatID.

[“CHANGE_STATUS”, newStatus] (optional!)
Change the status message associated with the client.
newStatus is a string.

Sunday, September 22, 13

A Few Tips
 Write some utility methods for common operations

 Example: receiving variable-length replies:

def receive(self, sock):

 reply = “”

 while 1:

 data = sock.recv(1024) # read up to 1024 bytes

 if not data: # no data means connection closed

 break

 elif len(data) == 1024: # read the data, there may be more; keep going

 reply = reply + data

 else: # read less than 1024, so that’s the end of the msg

 reply = reply + data

 break

 return reply

50

Sunday, September 22, 13

More Tips
 Remember: messages from the server may come at any time (asynchronously!)

 Invitations to chat, updated user list, a new message, etc.

 Create your socket and connect it to the server
 Whenever you need to write to the server, you can do it pretty much anywhere
 But for reading, start a new thread that’ll always be hanging out, waiting for messages to

show up (like the Handler class we saw before):
class Handler:

 def __init__(self, sock):

 self.thread = threading.Thread(target=self.handle)

 self.thread.start()

 def handle(self):

 input = self.sock.recv(1024)

 # deal with the message you just read from the server here

51

Sunday, September 22, 13

