

Week 2:
Quick and Dirty Jython Refresher

(Prelude to Asynchronous Programming)

CS6452

Sunday, August 25, 13

Connecting the Lo-Fi Prototype
with the Project

 A few points about the IM assignment
 The IM protocol we’ll be using doesn’t support

 Authentication/login
 Sending messages to a user before that user joins the chat
 Named, persistent chat rooms
 Buddies

 Some of these you can implement in your own client, even without
server support
 E.g., buffer messages sent to a user before he/she joins

Sunday, August 25, 13

A Bit More Administrivia...

 Late policy for assignments:
 Clear with me first if you have a valid excuse for missing a due date

 Examples: medical or family emergency
 My policy is -10% per late day, maximum 3 days late

 Grading criteria will be posted on the web for each assignment
 Readings will be posted ~1 week in advance

 So, readings we’ll discuss next week are already up
 Reminder: 1-page summaries are due one in class one week after

readings are assigned!
 In-class presentations

 For each module we’ll do a set of short in-class presentations
 Drop me a note if you want to present on the GUI project

Sunday, August 25, 13

Today’s Menu

 Jython Refresher
 Basic Control Flow
 Collection Classes
 Scoping and Modules
 Classes and Objects
 GUI Programming

 Useful odds-and-ends that may come in handy for the next
assignment

Sunday, August 25, 13

Know	
 Your	
 Student	
 Expressions

Has	
 ques5on	
 about	

variable	
 scopes	
 but	

is	
 slightly	
 too	
 shy	
 to	

ask	
 about	
 it

Deeply	
 excited	

about	
 how	
 Jython	

has	
 the	
 poten5al	
 to	

improve	
 every	

aspect	
 of	
 his	
 life

Hungry:	
 not	

interested	
 in	

anything	
 that	
 is	
 not	

a	
 cheeseburger

Lost	
 in	
 detailed	

fantasy	
 where	
 he	

drops	
 this	
 dumb	

class,	
 marries	

Jessica	
 Alba,	
 and	

starts	
 a	
 new	
 life	
 in	

Boca	
 Raton

Sunday, August 25, 13

Basic Control Flow

 All the usual, expected forms of control flow
 Conditionals: if

if x == 1:
print “X is one”

elif x == 0:

print “X is zero”

else:
print X is something else”

 Looping: while, for
 Exceptions: raise (we won’t talk about this until later in the class)

Sunday, August 25, 13

What	
 is	
 X	
 a)er	
 the	
 code	
 runs?

x	
 =	
 7
if	
 x	
 >	
 22:
	
 	
 	
 	
 	
 	
 x	
 =	
 5
elif	
 x	
 <=	
 7:
	
 	
 	
 	
 	
 	
 x	
 =	
 x*3
elif	
 x	
 ==	
 21:
	
 	
 	
 	
 	
 	
 x	
 =	
 x*2

1. 5

2. 7

3. 21

4. 42

5. I	
 have	
 no	
 idea

Sunday, August 25, 13

Basic Control Flow (cont’d)

 Iteration: while
x = 15

while x > 0:
print x

x = x - 1

• General form: while <test>: will continue to iterate as long as
<test> is true (not 0 or none)

• Special keywords to control looping

• break - jumps out of the loop

• continue - jumps back to the top of the loop (the while statement)

Sunday, August 25, 13

Basic Control Flow (cont’d)

• Iteration: for
for x in range(5):

print x prints 0, 1, 2, 3, 4

for x in range(2, 5):
print x prints 2, 3, 4

for x in [“spam”, “eggs”, “ham”]:
print x prints spam, eggs, ham

• General form: the for statement iterates over a sequence of items,
such as a list

Sunday, August 25, 13

What	
 is	
 z	
 a)er	
 the	
 code	
 runs?

x	
 =	
 5
z	
 =	
 0
for	
 x	
 in	
 range(5):
	
 	
 	
 	
 y	
 =	
 6
	
 	
 	
 	
 if	
 x	
 ==	
 3:
	
 	
 	
 	
 	
 	
 	
 	
 break
	
 	
 	
 	
 while	
 y	
 >	
 0:
	
 	
 	
 	
 	
 	
 	
 	
 y	
 =	
 y	
 -­‐	
 1
	
 	
 	
 	
 	
 	
 	
 	
 z	
 =	
 z	
 +	
 1

1. 0
2. 18
3. 24
4. 64
5. I	
 have	
 no	
 idea

Sunday, August 25, 13

Jython Collection Classes

Sunday, August 25, 13

Collections

 One of the strongest features of Jython: powerful built-in data
structures

 Let you organize and retrieve collections of data in ways that would
be impractical if you had to stash every item in a variable

 Sequences
 Lists
 Tuples

 Dictionaries

Sunday, August 25, 13

Variables and References

 A variable is simply a name that contains a reference to some
information

 foo = “Hello, world”

 Variables can be reassigned, and multiple variables can refer to the
same thing.

 Stashing a reference in a variable gives you a way to name it, and get
at it later.

foo “Hello, world”

String

Sunday, August 25, 13

The Need for More Complex
Data Structures

 Some more complex structures are hard to represent by just a
named variable though.

 Example: you want to keep track of all of the users in a chat.
 user1 = “Steven”
 user2 = “Amy”
 ...

 This is too static. Would you just create 1000 variables in case you
ever had that many users? How would you do something to each
one (can’t easily iterate)

Sunday, August 25, 13

Lists to the Rescue

 Fortunately, Jython has a build in way to do this: lists
 foo = [“one”, “two”, “three”]

 Lists collect multiple references to data items into a single data
structure

 These references are ordered
 The contents of the list can be altered (it is mutable)
 currentChatUsers = [“Amy”, “Steven”, ...]

foo

List

Sunday, August 25, 13

A Quick Jython List Refresher
 Lists are ordered collections of items

>>> L=[0, ‘zero’, ‘one’, 1]

 Selecting items from a list (note indices start at 0!)
>>> print L[1]

‘zero’

 Getting the length of a list
>>> len(L)

4

 Modifying lists
>>> L.append(’two’)

>>> L.remove(’zero’)

>>> print L

[0, ‘one’, 1, ‘two’]

 Iteration
for item in L:

print item

Sunday, August 25, 13

Tuples: Fixed Sequences

 Like lists, only immutable
 The set of references in a tuple is fixed

 Generally used either when:
 You need a constant list

 daysOfWeek = (“Monday,” “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, “Sunday”)

 You need to group together a set of data whose structure is fixed:
 E.g., using tuples as quick-and-dirty records, such as address book

entries:
 myContactInfo = (“Keith Edwards”, “TSRB348”, “keith@cc”)

 All list operations work on tuples, except ones that modify the set
of references within the tuple
 So, no append(), remove(), etc.

Sunday, August 25, 13

L	
 =	
 ['zero','one','two’]
n	
 =	
 1
L2	
 =	
 L
n2	
 =	
 n
L.append('three')
n	
 =	
 2
print	
 L2
print	
 n2	

Sunday, August 25, 13

Associating Data Items With
Each Other

 Sometimes, you need to associate one item with another one
 Example: hours worked on each day of the week:

 You could do this with variables, as long as there’s a fixed set of
them:
 sunday=4.5
 monday=8

“Sunday” 4.5
“Monday” 8
... ...

Sunday, August 25, 13

Associating Data Items With
Each Other (cont’d)

 If you don’t know the associations you might have up front, you
could use parallel lists:
 workDates = [“1/29/05”, “1/30/05”, “2/1/05”, ...]
 workHours = [4.5, 8, 5.5, ...]

 Then, iterate through the first list to find the date you’re looking
for, then look for the item with the corresponding index in the
second list

 Too much work! Too error prone!
 Fortunately, Jython has a built-in data structure for creating

associations: the dictionary

Sunday, August 25, 13

The Dictionary Data Structure
 Dictionaries associate values with keys (you lookup a value given its

key)
 Both are references to data items
 workRecord = { “1/29/05”: 4.5, “1/30/05”: 8, “2/2/05”: 5.5 }

 Dictionaries are the most commonly used Jython data type
 Virtually any Jython data type can be used as a key or as a value

workRecord

Dictionary

“1/29/05” 4.5

“1/30/05” 8.0

“2/2/05” 5.5

Sunday, August 25, 13

A Quick Jython Dictionary
Refresher
 Initializing a dictionary:

>>> dict = {’one’: 1, ‘two’: 2, ‘three’: 3}

 Looking up values:
>>> print dict[”two”]

2

 Inserting and changing values:
>>> dict[”four”] = 4

>>> dict[”two”] = 2222

>>> print dict

{’one’:1, ‘two’: 2222, ‘three’: 3, ‘four’: 4}

 Other operations:
>>> del dict[”one”]

>>> len(dict)

3
Sunday, August 25, 13

Write	
 some	
 code	
 that	
 builds	
 a	
 dic5onary	
 called	

5mesTwo.	
 	
 This	
 dic5onary	
 should	
 map	
 the	

numbers	
 1-­‐100	
 to	
 the	
 values	
 2-­‐200.

For	
 example	
 times2[33]	
 equals	
 66

Sunday, August 25, 13

timesTwo	
 =	
 {}
for	
 i	
 in	
 range	
 (1,10):
	
 	
 	
 	
 timesTwo[i]	
 =	
 i*2

Sunday, August 25, 13

More Dictionary Goodness

 Testing whether or not a dictionary has a given key
>> dict.has_key(“two”)

1

>> dict.has_key(“five”)

0
 Getting keys, values, and entire items

>> dict.keys()

[“two”, “three”, “four”]

>> dict.values()

[2222, 3, 4]

>> dict.items()

[(“two”, 2222), (“three”, 3), (“four”, 4)]

Sunday, August 25, 13

Scoping and Modules

Sunday, August 25, 13

Scoping

 What is scoping?
 Scoping is a fancy word that just means “the rules about what you

can see from where” in a program
 The namespace is the collection of stuff that you can see from any

given point in a program

Sunday, August 25, 13

An Example: Scoping Error

 welcomeMsg = “Hello!”
 def changeWelcomeMsg():

 welcomeMsg = “Bonjour!”
 print “New welcome message is”, welcomeMsg

 changeWelcomeMsg()
 >>> New welcome message is Bonjour!
 print welcomeMsg
 “Hello!”

Sunday, August 25, 13

An Example: Scoping Error

 welcomeMsg = “Hello!”
 def changeWelcomeMsg():

 welcomeMsg = “Bonjour!”
 print “New welcome message is”, welcomeMsg

 changeWelcomeMsg()
 >>> New welcome message is Bonjour!
 print welcomeMsg
 “Hello!”

welcomeMsg is defined in the
global scope

This lines defines a new variable
with the same name, in the local scope!

Since this call to print is outside the
function changeWelcomeMsg(), it
refers to the welcomeMsg variable in
the global scope.

Sunday, August 25, 13

Thinking About Scopes

global scope

func1 local scope

func2 local scope

func3 local scope

 Variables named in the global scope
are available to statements in any
scope
 Unless they have been “hidden” by a

local variable with the same name, as
in the error example

 Variables named in a local scope are
only available to statements in that
scope

 The first assignment to a variable
determines the scope it is in

Sunday, August 25, 13

More on Scopes

 “Global” really means the file the variable is in
 When you start developing with multiple files, each file defines its own

scope that is “global” for that file
 Each call to a function creates a new local scope

 Thus if a variable foo is defined in function func(), each call to func() has
its own new “namespace” and its own separate foo

 By default, all assignments that you make in a function create names
in the local scope
 Advanced: you can use the global statement if you want to change a

global variable from within a function
 Dangerous, but useful. We’ll talk about it in a later lecture

 Names not assigned to in a function are assumed to be globals

Sunday, August 25, 13

Still More on Scopes

 What all this boils down to is...
 Local variables (those first assigned to within a function) serve as

temporary names you need only when a function is running
 This helps modularity of your program (”hide” details within a

function)

 But:
 You need to be careful when using a name within a function that’s

defined outside
 Subtle and hard to track bugs...

Sunday, August 25, 13

A	
 common	
 bug

def	
 print0to9():
	
 	
 	
 	
 maxmum	
 =	
 10
	
 	
 	
 	
 for	
 i	
 in	
 range(maximum):
	
 	
 	
 	
 	
 	
 	
 	
 print	
 i

maximum	
 =	
 5
for	
 i	
 in	
 range(1,maximum):
	
 	
 	
 	
 print	
 i
print0to9()

Sunday, August 25, 13

Scoping Gotchas

 Subtly different than some other languages
 1. Local scopes don’t nest

def outerfunc(x, y):

 def innerfunc(z):

 if z > 0:

 print x, y

 innerfunc(x)
 x and y aren’t available inside the local scope for innerfunc

 2. There are actually three scopes: global, local, and __builtin__
 First, the local scope is checked
 Then, the global scope
 Finally, the scope defined by the module called __builtin__

 len, abs, max, min, ...

Sunday, August 25, 13

Modules

 Modules are the highest level building blocks in a Jython program
 Usually correspond to a single file of code
 Let you organize your code more creatively:

 Reuse code by storing it in files, callable by other files
 Partition the variable and function namespace (so that not everything

has to be at the “top level”)
 Create functionality or data that can be shared across programs

 You import a module to gain access to its functionality

Sunday, August 25, 13

Modules and Scoping

 Each module actually defines its own global scope
 Within a module, you can refer to names without using any extra

qualification
 To refer to names outside a module, you first import the module to

make it available to you
 Then refer to the name using dot notation
 Example:

import os

os.listdir(“/Users/keith/Desktop”)

Sunday, August 25, 13

Breaking Your Program into
Separate Files

a.py

import b

b.py

import c

c.py

Sunday, August 25, 13

Imports
 Each import statement defines a new namespace

 Imagine a file networking.py, containing a function broadcast()
 In your code:

 import networking
 networking.broadcast()

 You can assign more convenient names at the time of import
 Example: networking is too long to type repeatedly, or collides with

another name in you program
 In your code:

 import networking as net
 net.broadcast()

 Or:
 import javax.swing as swing
 list = swing.JList()

Sunday, August 25, 13

Classes and Objects

Sunday, August 25, 13

Objects

 Objects are simply a way to group together a set of functions with
the data that they operate on

 The built-in Jython types are already objects!
 Strings, integers, lists, dictionaries, etc.

 You can also create your own
 You first have to write a “blueprint” for what the object will do
 This is called the object’s class
 Defines what operations are available on it, what data it contains, etc
 You can use the blueprint to make instances of the class

 Terminology:
 Instances are the actual objects
 Classes are just the blueprints for making instances

Sunday, August 25, 13

Defining a New Class

class Counter:
def __init__(self):

self.count = 0

def increment(self):
self.count = self.count+1
return self.count

>>> c = Counter()
>>> c.increment()
1
>>> c.increment()
2

You define a new class via the class keyword

__init__() is a special function that is called when
an instance of the class is created

Classes can contain functions

Every function in a class takes an additional
argument, called self, which refers to the object
on which the function is being called.

Within a class, you must refer to data in the class
explicitly by scope: self.count

Creating an instance of a class looks like using
the class name as a function call

Sunday, August 25, 13

	
 Find	
 2	
 Bugs

class	
 Pair:
	
 	
 	
 	
 def	
 __init__(self,newA,newB):
	
 	
 	
 	
 	
 	
 	
 	
 self.a	
 =	
 newA
	
 	
 	
 	
 	
 	
 	
 	
 self.b	
 =	
 newB
	
 	
 	
 	

	
 	
 	
 	
 def	
 setA(self,newA):
	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 newA

c	
 =	
 Pair(1,2)
setA(77)

Sunday, August 25, 13

Each Instance is Separate

 Each instance has its own copy of the data, and its own namespace:
>>> c1 = Counter()

>>> c2 = Counter()

>>> c1.increment()

1

>>> c1.increment()

2

>>> c2.increment()

1

 Object-oriented programming lets you create reusable chunks of
code and data

 Each copy is separate from the others
 Advanced: there are ways to have instances of a class share data

Sunday, August 25, 13

Classes and Scoping

 Classes add a few more scoping rules to Jython
 Each instance is its own scope
 Within a class, methods define local scopes just like functions
 Example:

class Test:
 def someMethod(self):

 self.daysOfWeek = [”Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”]
 length = len(self.daysOfWeek)
 for i in range(0, length):
 print self.daysOfWeek[i]

Sunday, August 25, 13

Coming Full Circle...

 In Jython, everything makes use of the same simple mechanisms:
 Modules are really dictionaries that map from names (of variables and

functions) to the data and code in those modules
 import os
 print os.__dict__
 {’listdir’: <function at 15905785>,}
 dir(os) -- shows values in dictionary
 print os.__doc__

 Classes use the same mechanisms under the cover
 print Counter.__dict__
 {'__module__': '__main__', 'increment': <function increment at

8963605>, '__doc__': None, 'count': 0}
 These dictionaries just define the names that are valid within the

module or class

Sunday, August 25, 13

GUI Programming

Sunday, August 25, 13

GUI Programming 101

 The most important thing:
 GUIs are layed out as trees

 There is a toplevel container, usually a window
 Inside this are multiple panels (often invisible), used to control

layout
 For page layout people, think of the grid

 Decompose interface into rectangular regions
 May need many (invisible) sublevels to get it all right

Sunday, August 25, 13

An Example

JFrame

ContentPane

ScrollPane

JPanelJPanel

ScrollPane

TextArea

TextArea

JPanel

JPanel

Label

Label

Label

ScrollPane

TextArea

Sunday, August 25, 13

Some Common Swing Widgets

 Swing: Java’s GUI programming toolkit, callable in Jython
 On today’s menu:

 JFrames, JPanels
 Layout Managers
 JLists
 JButtons
 JLabels, JTextFields, JTextAreas

 This is an overview only
 You can do much more than I’ve shown here with each of these

widgets, plus there are many more widgets than these

Sunday, August 25, 13

Swing Widgets in Jython:
JFrames and JPanels

 JFrames are top-level windows
 JPanels allow grouping of other widgets

 Each JFrame has a panel into which the
frame’s contents must go: the contentPane
window = swing.JFrame(”FrameDemo”)

window.contentPane.add(new JButton())

 You must pack and show a JFrame to
display it
window.pack()

window.show()

Sunday, August 25, 13

Swing Widgets in Jython:
Layout Managers

 Layout Managers control the placement of widgets in a JPanel
 Simplest by far: awt.BorderLayout

window.contentPane.layout = awt.BorderLayout()

window.contentPane.add(”Center”, swing.JButton(”Button 2 (CENTER)”))

 Five regions:
 North, South: expand horizontally
 East, West: expand vertically
 Center: expands in both directions

Sunday, August 25, 13

Swing Widgets in Jython:
JLists

 JLists are collections of widgets
 list = swing.JList()

 Put JLists in a JScrollPane to make them scrollable
 window.contentPane.add(swing.JScrollPane(list))

 JLists contain a listData member with the contents
 list.listData = [’January’, ‘February’, ‘March’, ...]

 selectedValue contains the selected item!
 >>> print list.selectedValue
 ‘March’

Sunday, August 25, 13

Swing Widgets in Jython:
JButtons

 JButtons have many fancy features...
 Images, labels, tooltips, etc.

 Basic use is very simple:
 Supply a label when you construct the button

 button = swing.JButton(”This is my label!”)
 Provide a function to use as a callback

 def callbackFunction(event):
 print “button pressed!”

 button.actionPerformed = someCallback
 NOTE: when the function is a method, you must handle it slightly

differently!
 def callbackMethod(self, event):

 print “button pressed!”

 button.actionPerformed = self.someCallback
Sunday, August 25, 13

Swing Widgets in Jython:
JTextFields, JTextAreas, and JLabels

 JLabels are the world’s simplest widgets
years = swing.JLabel(”Years”)

 JTextFields are used for single-line text
entry
yearValue = swing.JTextField()

print yearValue.text

30

 JTextAreas are used for longer pieces of
text
area = swing.JTextArea(24, 80)

area.editable = 0

print area.text

area.text = area.text + “One more string”

Sunday, August 25, 13

Putting it All Together

Sunday, August 25, 13

Code Walkthrough and Demo

Sunday, August 25, 13

Useful Odds-and-Ends #1

 How do you make a “main” program?
 Analog to void main() in C, public static void main() in Java

 In Jython, the system variable __name__ will be set to the string
“__main__” in any file passed directly on the command line to
Jython

 Example:
 if __name__ == “__main__”:

 sampler = SwingSampler()

 On command line:
 jython swing-sampler.py

Sunday, August 25, 13

Useful Odds-and-Ends #2

 How do you get the name of the user running your program?
 Useful in, e.g., a Chat program if you don’t want to require users to

log in explicitly
 Note: for testing, you probably want some way to override this, so that you

can simulate multiple users on the same machine
 import java.lang as lang
 me = lang.System.getProperty(”user.name”)

 Returns login name

Sunday, August 25, 13

Useful Odds-and-Ends #3

 How do you pass arguments on the command line?
 Useful, for example, to override the user name or set other

parameters explicitly
 The variable sys.argv is the “argument vector”--the list of arguments

passed on the command line
 The first element (sys.argv[0]) is always the name of the Jython file
 Example:

 import sys
 if __name__ == “__main__”:

 if len(sys.argv) > 1:
 print “Got an argument”, sys.argv[1]

 else:
 print “Got no arguments”

Sunday, August 25, 13

Useful Odds-and-Ends #4

 Wacky Python syntax
 Multi-line string constants

 “””this is a multi-line
string constant”””

 Multiple assignment
 a, b, c = 1, 2, 3
 for key, value in dict.items():

 Default parameters
 def func(a, b=0, c=”Fred”, *d, **e):

 *d is a “catch-all” -- captures in a tuple any excess arguments
 **e is a second-level catch-all -- captures in a dictionary any keyword

arguments not already specified in the argument list

 And, of course, indentation denotes blocks...

Sunday, August 25, 13

Useful Odds-and-Ends #5
 Easy bridging between Java and Jython
 Can import and use arbitrary Java classes from within Jython

 import java.util.Date as Date

 d = Date()

 print d

 Can subclass Java classes from Jython
 class MyUI(swing.JFrame):

 Automatic type conversion between many Java and Jython types
 e.g., Jython lists to and from Java arrays

 Detection and conversion of common code patterns

setFoo(); getFoo() foo = 12; print foo

JButton close = new JButton(”Close Me”)
close.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 java.lang.System.exit(0);
 }
});

close = swing.JButton(”Close Me”)
close.actionPerformed = self.terminateProgram

def terminateProgram(self, event):
 java.lang.System.exit(0)

Sunday, August 25, 13

