

Week 2:
Quick and Dirty Jython Refresher

(Prelude to Asynchronous Programming)

CS6452

Sunday, August 25, 13

Connecting the Lo-Fi Prototype
with the Project

 A few points about the IM assignment
 The IM protocol we’ll be using doesn’t support

 Authentication/login
 Sending messages to a user before that user joins the chat
 Named, persistent chat rooms
 Buddies

 Some of these you can implement in your own client, even without
server support
 E.g., buffer messages sent to a user before he/she joins

Sunday, August 25, 13

A Bit More Administrivia...

 Late policy for assignments:
 Clear with me first if you have a valid excuse for missing a due date

 Examples: medical or family emergency
 My policy is -10% per late day, maximum 3 days late

 Grading criteria will be posted on the web for each assignment
 Readings will be posted ~1 week in advance

 So, readings we’ll discuss next week are already up
 Reminder: 1-page summaries are due one in class one week after

readings are assigned!
 In-class presentations

 For each module we’ll do a set of short in-class presentations
 Drop me a note if you want to present on the GUI project

Sunday, August 25, 13

Today’s Menu

 Jython Refresher
 Basic Control Flow
 Collection Classes
 Scoping and Modules
 Classes and Objects
 GUI Programming

 Useful odds-and-ends that may come in handy for the next
assignment

Sunday, August 25, 13

Know	 Your	 Student	 Expressions

Has	 ques5on	 about	
variable	 scopes	 but	
is	 slightly	 too	 shy	 to	

ask	 about	 it

Deeply	 excited	
about	 how	 Jython	
has	 the	 poten5al	 to	

improve	 every	
aspect	 of	 his	 life

Hungry:	 not	
interested	 in	

anything	 that	 is	 not	
a	 cheeseburger

Lost	 in	 detailed	
fantasy	 where	 he	
drops	 this	 dumb	
class,	 marries	

Jessica	 Alba,	 and	
starts	 a	 new	 life	 in	

Boca	 Raton

Sunday, August 25, 13

Basic Control Flow

 All the usual, expected forms of control flow
 Conditionals: if

if x == 1:
print “X is one”

elif x == 0:

print “X is zero”

else:
print X is something else”

 Looping: while, for
 Exceptions: raise (we won’t talk about this until later in the class)

Sunday, August 25, 13

What	 is	 X	 a)er	 the	 code	 runs?

x	 =	 7
if	 x	 >	 22:
	 	 	 	 	 	 x	 =	 5
elif	 x	 <=	 7:
	 	 	 	 	 	 x	 =	 x*3
elif	 x	 ==	 21:
	 	 	 	 	 	 x	 =	 x*2

1. 5

2. 7

3. 21

4. 42

5. I	 have	 no	 idea

Sunday, August 25, 13

Basic Control Flow (cont’d)

 Iteration: while
x = 15

while x > 0:
print x

x = x - 1

• General form: while <test>: will continue to iterate as long as
<test> is true (not 0 or none)

• Special keywords to control looping

• break - jumps out of the loop

• continue - jumps back to the top of the loop (the while statement)

Sunday, August 25, 13

Basic Control Flow (cont’d)

• Iteration: for
for x in range(5):

print x prints 0, 1, 2, 3, 4

for x in range(2, 5):
print x prints 2, 3, 4

for x in [“spam”, “eggs”, “ham”]:
print x prints spam, eggs, ham

• General form: the for statement iterates over a sequence of items,
such as a list

Sunday, August 25, 13

What	 is	 z	 a)er	 the	 code	 runs?

x	 =	 5
z	 =	 0
for	 x	 in	 range(5):
	 	 	 	 y	 =	 6
	 	 	 	 if	 x	 ==	 3:
	 	 	 	 	 	 	 	 break
	 	 	 	 while	 y	 >	 0:
	 	 	 	 	 	 	 	 y	 =	 y	 -‐	 1
	 	 	 	 	 	 	 	 z	 =	 z	 +	 1

1. 0
2. 18
3. 24
4. 64
5. I	 have	 no	 idea

Sunday, August 25, 13

Jython Collection Classes

Sunday, August 25, 13

Collections

 One of the strongest features of Jython: powerful built-in data
structures

 Let you organize and retrieve collections of data in ways that would
be impractical if you had to stash every item in a variable

 Sequences
 Lists
 Tuples

 Dictionaries

Sunday, August 25, 13

Variables and References

 A variable is simply a name that contains a reference to some
information

 foo = “Hello, world”

 Variables can be reassigned, and multiple variables can refer to the
same thing.

 Stashing a reference in a variable gives you a way to name it, and get
at it later.

foo “Hello, world”

String

Sunday, August 25, 13

The Need for More Complex
Data Structures

 Some more complex structures are hard to represent by just a
named variable though.

 Example: you want to keep track of all of the users in a chat.
 user1 = “Steven”
 user2 = “Amy”
 ...

 This is too static. Would you just create 1000 variables in case you
ever had that many users? How would you do something to each
one (can’t easily iterate)

Sunday, August 25, 13

Lists to the Rescue

 Fortunately, Jython has a build in way to do this: lists
 foo = [“one”, “two”, “three”]

 Lists collect multiple references to data items into a single data
structure

 These references are ordered
 The contents of the list can be altered (it is mutable)
 currentChatUsers = [“Amy”, “Steven”, ...]

foo

List

Sunday, August 25, 13

A Quick Jython List Refresher
 Lists are ordered collections of items

>>> L=[0, ‘zero’, ‘one’, 1]

 Selecting items from a list (note indices start at 0!)
>>> print L[1]

‘zero’

 Getting the length of a list
>>> len(L)

4

 Modifying lists
>>> L.append(’two’)

>>> L.remove(’zero’)

>>> print L

[0, ‘one’, 1, ‘two’]

 Iteration
for item in L:

print item

Sunday, August 25, 13

Tuples: Fixed Sequences

 Like lists, only immutable
 The set of references in a tuple is fixed

 Generally used either when:
 You need a constant list

 daysOfWeek = (“Monday,” “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, “Sunday”)

 You need to group together a set of data whose structure is fixed:
 E.g., using tuples as quick-and-dirty records, such as address book

entries:
 myContactInfo = (“Keith Edwards”, “TSRB348”, “keith@cc”)

 All list operations work on tuples, except ones that modify the set
of references within the tuple
 So, no append(), remove(), etc.

Sunday, August 25, 13

L	 =	 ['zero','one','two’]
n	 =	 1
L2	 =	 L
n2	 =	 n
L.append('three')
n	 =	 2
print	 L2
print	 n2	

Sunday, August 25, 13

Associating Data Items With
Each Other

 Sometimes, you need to associate one item with another one
 Example: hours worked on each day of the week:

 You could do this with variables, as long as there’s a fixed set of
them:
 sunday=4.5
 monday=8

“Sunday” 4.5
“Monday” 8
... ...

Sunday, August 25, 13

Associating Data Items With
Each Other (cont’d)

 If you don’t know the associations you might have up front, you
could use parallel lists:
 workDates = [“1/29/05”, “1/30/05”, “2/1/05”, ...]
 workHours = [4.5, 8, 5.5, ...]

 Then, iterate through the first list to find the date you’re looking
for, then look for the item with the corresponding index in the
second list

 Too much work! Too error prone!
 Fortunately, Jython has a built-in data structure for creating

associations: the dictionary

Sunday, August 25, 13

The Dictionary Data Structure
 Dictionaries associate values with keys (you lookup a value given its

key)
 Both are references to data items
 workRecord = { “1/29/05”: 4.5, “1/30/05”: 8, “2/2/05”: 5.5 }

 Dictionaries are the most commonly used Jython data type
 Virtually any Jython data type can be used as a key or as a value

workRecord

Dictionary

“1/29/05” 4.5

“1/30/05” 8.0

“2/2/05” 5.5

Sunday, August 25, 13

A Quick Jython Dictionary
Refresher
 Initializing a dictionary:

>>> dict = {’one’: 1, ‘two’: 2, ‘three’: 3}

 Looking up values:
>>> print dict[”two”]

2

 Inserting and changing values:
>>> dict[”four”] = 4

>>> dict[”two”] = 2222

>>> print dict

{’one’:1, ‘two’: 2222, ‘three’: 3, ‘four’: 4}

 Other operations:
>>> del dict[”one”]

>>> len(dict)

3
Sunday, August 25, 13

Write	 some	 code	 that	 builds	 a	 dic5onary	 called	
5mesTwo.	 	 This	 dic5onary	 should	 map	 the	
numbers	 1-‐100	 to	 the	 values	 2-‐200.

For	 example	 times2[33]	 equals	 66

Sunday, August 25, 13

timesTwo	 =	 {}
for	 i	 in	 range	 (1,10):
	 	 	 	 timesTwo[i]	 =	 i*2

Sunday, August 25, 13

More Dictionary Goodness

 Testing whether or not a dictionary has a given key
>> dict.has_key(“two”)

1

>> dict.has_key(“five”)

0
 Getting keys, values, and entire items

>> dict.keys()

[“two”, “three”, “four”]

>> dict.values()

[2222, 3, 4]

>> dict.items()

[(“two”, 2222), (“three”, 3), (“four”, 4)]

Sunday, August 25, 13

Scoping and Modules

Sunday, August 25, 13

Scoping

 What is scoping?
 Scoping is a fancy word that just means “the rules about what you

can see from where” in a program
 The namespace is the collection of stuff that you can see from any

given point in a program

Sunday, August 25, 13

An Example: Scoping Error

 welcomeMsg = “Hello!”
 def changeWelcomeMsg():

 welcomeMsg = “Bonjour!”
 print “New welcome message is”, welcomeMsg

 changeWelcomeMsg()
 >>> New welcome message is Bonjour!
 print welcomeMsg
 “Hello!”

Sunday, August 25, 13

An Example: Scoping Error

 welcomeMsg = “Hello!”
 def changeWelcomeMsg():

 welcomeMsg = “Bonjour!”
 print “New welcome message is”, welcomeMsg

 changeWelcomeMsg()
 >>> New welcome message is Bonjour!
 print welcomeMsg
 “Hello!”

welcomeMsg is defined in the
global scope

This lines defines a new variable
with the same name, in the local scope!

Since this call to print is outside the
function changeWelcomeMsg(), it
refers to the welcomeMsg variable in
the global scope.

Sunday, August 25, 13

Thinking About Scopes

global scope

func1 local scope

func2 local scope

func3 local scope

 Variables named in the global scope
are available to statements in any
scope
 Unless they have been “hidden” by a

local variable with the same name, as
in the error example

 Variables named in a local scope are
only available to statements in that
scope

 The first assignment to a variable
determines the scope it is in

Sunday, August 25, 13

More on Scopes

 “Global” really means the file the variable is in
 When you start developing with multiple files, each file defines its own

scope that is “global” for that file
 Each call to a function creates a new local scope

 Thus if a variable foo is defined in function func(), each call to func() has
its own new “namespace” and its own separate foo

 By default, all assignments that you make in a function create names
in the local scope
 Advanced: you can use the global statement if you want to change a

global variable from within a function
 Dangerous, but useful. We’ll talk about it in a later lecture

 Names not assigned to in a function are assumed to be globals

Sunday, August 25, 13

Still More on Scopes

 What all this boils down to is...
 Local variables (those first assigned to within a function) serve as

temporary names you need only when a function is running
 This helps modularity of your program (”hide” details within a

function)

 But:
 You need to be careful when using a name within a function that’s

defined outside
 Subtle and hard to track bugs...

Sunday, August 25, 13

A	 common	 bug

def	 print0to9():
	 	 	 	 maxmum	 =	 10
	 	 	 	 for	 i	 in	 range(maximum):
	 	 	 	 	 	 	 	 print	 i

maximum	 =	 5
for	 i	 in	 range(1,maximum):
	 	 	 	 print	 i
print0to9()

Sunday, August 25, 13

Scoping Gotchas

 Subtly different than some other languages
 1. Local scopes don’t nest

def outerfunc(x, y):

 def innerfunc(z):

 if z > 0:

 print x, y

 innerfunc(x)
 x and y aren’t available inside the local scope for innerfunc

 2. There are actually three scopes: global, local, and __builtin__
 First, the local scope is checked
 Then, the global scope
 Finally, the scope defined by the module called __builtin__

 len, abs, max, min, ...

Sunday, August 25, 13

Modules

 Modules are the highest level building blocks in a Jython program
 Usually correspond to a single file of code
 Let you organize your code more creatively:

 Reuse code by storing it in files, callable by other files
 Partition the variable and function namespace (so that not everything

has to be at the “top level”)
 Create functionality or data that can be shared across programs

 You import a module to gain access to its functionality

Sunday, August 25, 13

Modules and Scoping

 Each module actually defines its own global scope
 Within a module, you can refer to names without using any extra

qualification
 To refer to names outside a module, you first import the module to

make it available to you
 Then refer to the name using dot notation
 Example:

import os

os.listdir(“/Users/keith/Desktop”)

Sunday, August 25, 13

Breaking Your Program into
Separate Files

a.py

import b

b.py

import c

c.py

Sunday, August 25, 13

Imports
 Each import statement defines a new namespace

 Imagine a file networking.py, containing a function broadcast()
 In your code:

 import networking
 networking.broadcast()

 You can assign more convenient names at the time of import
 Example: networking is too long to type repeatedly, or collides with

another name in you program
 In your code:

 import networking as net
 net.broadcast()

 Or:
 import javax.swing as swing
 list = swing.JList()

Sunday, August 25, 13

Classes and Objects

Sunday, August 25, 13

Objects

 Objects are simply a way to group together a set of functions with
the data that they operate on

 The built-in Jython types are already objects!
 Strings, integers, lists, dictionaries, etc.

 You can also create your own
 You first have to write a “blueprint” for what the object will do
 This is called the object’s class
 Defines what operations are available on it, what data it contains, etc
 You can use the blueprint to make instances of the class

 Terminology:
 Instances are the actual objects
 Classes are just the blueprints for making instances

Sunday, August 25, 13

Defining a New Class

class Counter:
def __init__(self):

self.count = 0

def increment(self):
self.count = self.count+1
return self.count

>>> c = Counter()
>>> c.increment()
1
>>> c.increment()
2

You define a new class via the class keyword

__init__() is a special function that is called when
an instance of the class is created

Classes can contain functions

Every function in a class takes an additional
argument, called self, which refers to the object
on which the function is being called.

Within a class, you must refer to data in the class
explicitly by scope: self.count

Creating an instance of a class looks like using
the class name as a function call

Sunday, August 25, 13

	 Find	 2	 Bugs

class	 Pair:
	 	 	 	 def	 __init__(self,newA,newB):
	 	 	 	 	 	 	 	 self.a	 =	 newA
	 	 	 	 	 	 	 	 self.b	 =	 newB
	 	 	 	
	 	 	 	 def	 setA(self,newA):
	 	 	 	 	 	 	 	 a	 =	 newA

c	 =	 Pair(1,2)
setA(77)

Sunday, August 25, 13

Each Instance is Separate

 Each instance has its own copy of the data, and its own namespace:
>>> c1 = Counter()

>>> c2 = Counter()

>>> c1.increment()

1

>>> c1.increment()

2

>>> c2.increment()

1

 Object-oriented programming lets you create reusable chunks of
code and data

 Each copy is separate from the others
 Advanced: there are ways to have instances of a class share data

Sunday, August 25, 13

Classes and Scoping

 Classes add a few more scoping rules to Jython
 Each instance is its own scope
 Within a class, methods define local scopes just like functions
 Example:

class Test:
 def someMethod(self):

 self.daysOfWeek = [”Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”]
 length = len(self.daysOfWeek)
 for i in range(0, length):
 print self.daysOfWeek[i]

Sunday, August 25, 13

Coming Full Circle...

 In Jython, everything makes use of the same simple mechanisms:
 Modules are really dictionaries that map from names (of variables and

functions) to the data and code in those modules
 import os
 print os.__dict__
 {’listdir’: <function at 15905785>,}
 dir(os) -- shows values in dictionary
 print os.__doc__

 Classes use the same mechanisms under the cover
 print Counter.__dict__
 {'__module__': '__main__', 'increment': <function increment at

8963605>, '__doc__': None, 'count': 0}
 These dictionaries just define the names that are valid within the

module or class

Sunday, August 25, 13

GUI Programming

Sunday, August 25, 13

GUI Programming 101

 The most important thing:
 GUIs are layed out as trees

 There is a toplevel container, usually a window
 Inside this are multiple panels (often invisible), used to control

layout
 For page layout people, think of the grid

 Decompose interface into rectangular regions
 May need many (invisible) sublevels to get it all right

Sunday, August 25, 13

An Example

JFrame

ContentPane

ScrollPane

JPanelJPanel

ScrollPane

TextArea

TextArea

JPanel

JPanel

Label

Label

Label

ScrollPane

TextArea

Sunday, August 25, 13

Some Common Swing Widgets

 Swing: Java’s GUI programming toolkit, callable in Jython
 On today’s menu:

 JFrames, JPanels
 Layout Managers
 JLists
 JButtons
 JLabels, JTextFields, JTextAreas

 This is an overview only
 You can do much more than I’ve shown here with each of these

widgets, plus there are many more widgets than these

Sunday, August 25, 13

Swing Widgets in Jython:
JFrames and JPanels

 JFrames are top-level windows
 JPanels allow grouping of other widgets

 Each JFrame has a panel into which the
frame’s contents must go: the contentPane
window = swing.JFrame(”FrameDemo”)

window.contentPane.add(new JButton())

 You must pack and show a JFrame to
display it
window.pack()

window.show()

Sunday, August 25, 13

Swing Widgets in Jython:
Layout Managers

 Layout Managers control the placement of widgets in a JPanel
 Simplest by far: awt.BorderLayout

window.contentPane.layout = awt.BorderLayout()

window.contentPane.add(”Center”, swing.JButton(”Button 2 (CENTER)”))

 Five regions:
 North, South: expand horizontally
 East, West: expand vertically
 Center: expands in both directions

Sunday, August 25, 13

Swing Widgets in Jython:
JLists

 JLists are collections of widgets
 list = swing.JList()

 Put JLists in a JScrollPane to make them scrollable
 window.contentPane.add(swing.JScrollPane(list))

 JLists contain a listData member with the contents
 list.listData = [’January’, ‘February’, ‘March’, ...]

 selectedValue contains the selected item!
 >>> print list.selectedValue
 ‘March’

Sunday, August 25, 13

Swing Widgets in Jython:
JButtons

 JButtons have many fancy features...
 Images, labels, tooltips, etc.

 Basic use is very simple:
 Supply a label when you construct the button

 button = swing.JButton(”This is my label!”)
 Provide a function to use as a callback

 def callbackFunction(event):
 print “button pressed!”

 button.actionPerformed = someCallback
 NOTE: when the function is a method, you must handle it slightly

differently!
 def callbackMethod(self, event):

 print “button pressed!”

 button.actionPerformed = self.someCallback
Sunday, August 25, 13

Swing Widgets in Jython:
JTextFields, JTextAreas, and JLabels

 JLabels are the world’s simplest widgets
years = swing.JLabel(”Years”)

 JTextFields are used for single-line text
entry
yearValue = swing.JTextField()

print yearValue.text

30

 JTextAreas are used for longer pieces of
text
area = swing.JTextArea(24, 80)

area.editable = 0

print area.text

area.text = area.text + “One more string”

Sunday, August 25, 13

Putting it All Together

Sunday, August 25, 13

Code Walkthrough and Demo

Sunday, August 25, 13

Useful Odds-and-Ends #1

 How do you make a “main” program?
 Analog to void main() in C, public static void main() in Java

 In Jython, the system variable __name__ will be set to the string
“__main__” in any file passed directly on the command line to
Jython

 Example:
 if __name__ == “__main__”:

 sampler = SwingSampler()

 On command line:
 jython swing-sampler.py

Sunday, August 25, 13

Useful Odds-and-Ends #2

 How do you get the name of the user running your program?
 Useful in, e.g., a Chat program if you don’t want to require users to

log in explicitly
 Note: for testing, you probably want some way to override this, so that you

can simulate multiple users on the same machine
 import java.lang as lang
 me = lang.System.getProperty(”user.name”)

 Returns login name

Sunday, August 25, 13

Useful Odds-and-Ends #3

 How do you pass arguments on the command line?
 Useful, for example, to override the user name or set other

parameters explicitly
 The variable sys.argv is the “argument vector”--the list of arguments

passed on the command line
 The first element (sys.argv[0]) is always the name of the Jython file
 Example:

 import sys
 if __name__ == “__main__”:

 if len(sys.argv) > 1:
 print “Got an argument”, sys.argv[1]

 else:
 print “Got no arguments”

Sunday, August 25, 13

Useful Odds-and-Ends #4

 Wacky Python syntax
 Multi-line string constants

 “””this is a multi-line
string constant”””

 Multiple assignment
 a, b, c = 1, 2, 3
 for key, value in dict.items():

 Default parameters
 def func(a, b=0, c=”Fred”, *d, **e):

 *d is a “catch-all” -- captures in a tuple any excess arguments
 **e is a second-level catch-all -- captures in a dictionary any keyword

arguments not already specified in the argument list

 And, of course, indentation denotes blocks...

Sunday, August 25, 13

Useful Odds-and-Ends #5
 Easy bridging between Java and Jython
 Can import and use arbitrary Java classes from within Jython

 import java.util.Date as Date

 d = Date()

 print d

 Can subclass Java classes from Jython
 class MyUI(swing.JFrame):

 Automatic type conversion between many Java and Jython types
 e.g., Jython lists to and from Java arrays

 Detection and conversion of common code patterns

setFoo(); getFoo() foo = 12; print foo

JButton close = new JButton(”Close Me”)
close.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 java.lang.System.exit(0);
 }
});

close = swing.JButton(”Close Me”)
close.actionPerformed = self.terminateProgram

def terminateProgram(self, event):
 java.lang.System.exit(0)

Sunday, August 25, 13

