
Using Regular Expressions

What are “Regular Expressions?”

l Power text-matching tools	

l Let you search strings for patterns; manipulate or chop up strings

based on patterns	

l Patterns can be based on “normal” characters (e.g., the alphabet)	

l Can also include “special” symbols that give more expressive power	

l Match only numbers	

l Match only letters	

l Require that a string have zero or more (or one or more, or ...)

occurrences of a given pattern before it counts as a match	

l Require that a string have a certain pattern at the beginning, or the end,

of it in order for it to match

Understanding Regular
Expressions

l You define a pattern string that can contain normal characters as
well as characters that represent special conditions like the ones on
the earlier slide	

l Test this against a target string to determine if the pattern matches
that string	

l Meaning: that the pattern, including any special conditions, exists in

that target string	

l Normal characters must match exactly	

l Special characters let you make the match more flexible

Regular Expressions in Python

l Use the “re” module:	

l import re	

l Most important methods:	

l search(pattern, string)	

l Tests to see if the pattern matches anywhere in the target string;
returns a MatchObject corresponding to the first one found	

l split(pattern, string)	

l Breaks apart the string by finding occurrences of the pattern (in other

words, treating the pattern as the delimiter). Matched pattern elements
are not returned in the strings

Examples

import re	

str = “Hello, Allan”	

match = re.search(“ll”, str)	

l match.start() - returns 2, the index of the start of where the pattern

occurs	

l match.end() - returns 4, the index of the end of where the pattern

occurs	

l To search for the next occurrence, one easy way is use the
returned indices to create a substring of the original string that
excludes the matched part:	

l substr = str[4:]	

l substr now refers to a string containing all the characters after index 4

(“o, Allan”) which can be searched again to find the next occurrence of
the pattern

More Examples

str = “Hello, Allan”	

re.split(“ll”, str) - returns [‘He’, ‘o, A’, ‘an’]	

Special Characters

l Backslashes are frequently used in regular expression patterns	

l ... but the backslash character itself has special meaning in Python,

so normally you’d have to put another backslash in front of it	

l Results in really unreadable patterns!	

l Alternative: use Python “raw” strings:	

l Preface string with lowercase r	

l Lets you get away without the extra backslash	

l Example: r’\w\w’

Special Characters
. (a single period) Matches any character except a newline

^ or \A Limits the match to occur at the beginning of the string

$ or \Z Limits the match to occur at the end of the string

* (asterisk) Matches zero or more of the preceding character. Example: s* means zero or more of the letter
“s”

+ (plus) Matches one or more of the preceding character

[] Defines a character set. For example, to match against any of the vowels, use [aeiou]. To match
against any number of numerals, use [0123456789-*

\s Matches any whitespace character (space, tab, newline)

\n Matches newline

\w Matches any alphabetic or numeric character. Equivalent to [a-zA-Z0-9]

Resources, Tutorials, and
Examples

l http://www.amk.ca/python/howto/regex/	

l http://diveintopython.org/regular_expressions/index.html	

l http://www.deitel.com/articles/internet_web_tutorials/20060225/

PythonStringProcessing/index.html	

l http://www.regular-expressions.info/python.html

