

Welcome to CS6452!

Blair MacIntyre
blair@cc.gatech.edu

1Monday, August 19, 13

mailto:blair@cc.gatech.edu
mailto:blair@cc.gatech.edu

Introductions!

l Me
l Associate Professor, Interactive Computing
l Research/Teaching on Augmented Reality (Graphics/HCI/DM) and

Games
l Focus on both experiences (design, creation, evaluation, reflection) and

on tools, especially tools for novices

l IC representative on CS PhD Committee
l Director of the Computation Media undergraduate degree

2Monday, August 19, 13

Introductions!

l Please, everyone fill out the online survey!
l in t-square announcements

l Now, introductions
l Name
l What program
l Why this class?

3Monday, August 19, 13

Some Preliminaries

l Laptops
l Every class!

l Responsible for checking in on t-square and class website regularly
l http://ael.gatech.edu/cs6452f13

l (linked off t-square)

l Keep up!
l If you don’t have the equivalent of 4452, get it ASAP!

4Monday, August 19, 13

http://ael.gatech.edu/cs6452f13
http://ael.gatech.edu/cs6452f13

About Recording, Devices, etc ...

l No recording devices in class without a reason, and permission
l e.g., Livescribe, audio recorder, Glass

l Absolutely no video recording. Period.
l Absolutely no sharing of any recorded media (pictures, audio)

l On social media, on the web, via email, ...
l In other words

l If you need to record for your benefit, that’s fine, but its only for you

l Nothing that distracts others (talking on phones, to phones, ...)
l Please close computers when you aren’t using them FOR class

5Monday, August 19, 13

Nuts and Bolts

l This is the second required class in the HCC Ph.D. program
l Designed to ensure a basic level of competency in building medium-

scale programs
l Understanding of software architectural design considerations
l Best thought of as the second part of CS4452 (which is CS1315++)
l In HCC terms, should give you the skills needed to do your

computation portfolio requirement
l Technical reading
l Technical writing
l Technical doing
l Technical talking

l Other students also take it (space permitting), including HCI MS,
DM and others

6Monday, August 19, 13

Setting Expectations

l What does “Prototyping Interactive Systems” mean, anyway?
l The course title has caused a lot of confusion:

l Not about using prototyping tools (e.g., Director)
l Not about evaluating prototypes (take the HCI class for this)
l Instead, about the rapid creation of interactive systems through

programming

l Emphasis on scripting languages and common technical idioms that
are useful across a breadth of CS

l Covers both theory and practice of pragmatic systems building...
l ... as well as skills in describing/arguing/defending your design

choices
l 1st Caveat: My first time teaching Keith/Mark’s class
l 2nd Caveat: I don’t have a ton of Java/Python/Jython experience

7Monday, August 19, 13

Programming and Prototyping

l What does programming have to do with prototypes?
l It’s the final (and most time consuming) stage of the prototyping

lifecycle
l Gives you the most high-fidelity approximation of a “real” system
l Useful for communicating with end-users, other developers, etc.

l How is prototype programming different than other programming?
l Focus on rapid creation of basic functionality, appearance, behavior
l Less on dealing with errors, boundary conditions, performance, etc.

8Monday, August 19, 13

Focus on Practice

l Software development with a focus on breadth, not depth
l Skills to produce high-fidelity interactive prototypes
l Skills to produce code that makes an argument: demonstration of

concepts
l HCC: skills to complete the computation portfolio requirement
l Skills in talking and writing about code
l Pragmatic development:

l Scripting languages (Jython)
l Integration with non-scripting languages (Java)
l Multi-file development
l (To some extent: Command line tools)
l GUIs, networking, threads, databases, web services, security, ...

9Monday, August 19, 13

What Do We Mean By Theory?

l Understanding why things work the way they do
l Understanding competing architectures and approaches

l E.g., client-server versus peer-to-peer
l E.g., different models for GUI programming

l Not just building systems for you to evaluate...
l ... but understanding the design choices embedded in systems, and

what those implications are for HCC
l Reading and understanding technical papers for their (often implicit)

design choices

10Monday, August 19, 13

Goals for this Class:
HCC and HCI students

l Hone your programming chops to the point where a medium-sized
project (say, 5000 lines of code) is not a terrifying prospect
l Learn how to decompose a problem into manageable chunks
l Learn enough of the “idioms” of programming to be able to do more

than just simple, straight-line programs
l Impart a few “meta skills” in the process

l Communicating about software
l Communicating through software
l How to appropriate (read: steal) others’ code and adapt it
l Basic software project management

l Basic understanding of a range of systems architectural choices

11Monday, August 19, 13

Course Structure

12Monday, August 19, 13

Course Structure

l Course is structured as a set of “modules”
l Each module covers a subject area in CS
l Modules align with topics needed to complete a part of the project
l Readings cover advanced topics related to each module

l Each module is roughly 2-3 weeks, but we’ll adapt as needed
l Roughly:

l First half of class is lecture, mostly focused on practical concepts
l Second half is either paper discussion, or problem solving/lab
l Perhaps, opportunistically: invited guest lectures on topics of interest

l Everybody works individually, but we’ll share experiences
l Short in-class presentations toward the end of each module
l Describe the architecture of a portion of your prototype, how you

solved a problem, what design choices were available, etc.

13Monday, August 19, 13

Modules

I. Asynchronous Programming
l Event-based programming, callbacks, polling

II. Distributed Applications
l Idioms of networking, client-server, peer-to-peer

III. Web Services
l XML, SOAP, using web services in practice, integration with Java code

IV. Data Management
l Logging, instrumentation, data storage and querying, databases

V. Advanced Topics (if time)
l TBD, but candidates include: security, hardware, research in prototyping

14Monday, August 19, 13

The Project

l This is a project class
l We will do one project that lasts the duration of the semester

l IM/Chat program, probably 2000-3000 lines of code
l Single-person “teams”

l Assumes Jython knowledge at about the level of CS4452
l Good mastery of control flow, variables, scoping
l Basic object-oriented programming concepts
l How to use JES (or another development environment, preferably the

command line)

15Monday, August 19, 13

Readings and Homeworks

l We’ll have a number of readings through the semester
l Papers selected to build on topics covered in each module
l Technical papers: UI software, networking, applications, etc.

l Regular Reading Activity: Identify “interesting” quotes that get
written on the board to prompt Discussion.

l Usual Reading Homework: written, one-page summaries of each
paper
l I’ll provide a list of criteria I’d like you to touch on in your summaries

16Monday, August 19, 13

Take Home Writing Assignments

l Exact number TBD
l Longer written assignments based on either the readings or the

project
l Possible examples:

l Write an “implementation section” describing the design choices
inherent in your project

l Take three of the assigned papers and contrast/critique the technical
assumptions made in each

l Will likely be take-home

17Monday, August 19, 13

Grading Criteria
Project Implementation: how functional is your prototype? How
well does it work? How well does it demonstrate the concepts
taught in class?

50%

Homework: Reading Summaries, Written Assignments 30%

Participation in Reading Discussions 10%

In-class presentations 10%

18Monday, August 19, 13

Today’s Class

l Outline for the remainder of today’s class:
l What is prototyping?
l Why prototype?
l The kinds of prototyping
l The first project assignment
l Practicum: getting started

19Monday, August 19, 13

What is Prototyping?

l The creation of artifacts that can be used to:
l Assess the utility and usability of a proposed system, through evaluation
l Communicate design alternatives with various stakeholders

l The “customer”
l Engineers/builders
l Management

l Ideally, a prototype should
l ... be quick enough to build to allow easy experimentation
l ... have fidelity appropriate to demonstrate the desired concepts

20Monday, August 19, 13

Why Prototype?

l In two words: risk mitigation
l From an evaluation perspective, allows you to get feedback on

designs before there’s a huge investment in it
l From a design perspective, allows you to quickly experiment with

alternatives, cheaply

21Monday, August 19, 13

An Example

l When interfaces go bad...

l What’s wrong with this?

22Monday, August 19, 13

An Example

l When interfaces go bad...

l What’s wrong with this?
l The “From” field is editable, but doesn’t do anything!
l Let’s you change the file extension without warning
l Is modal!

l Could this have been saved by prototyping?

23Monday, August 19, 13

Another Example

l Not just restricted to applications...

“If you are seated in an exit row and you
cannot understand this card or cannot
see well enough to follow these
instructions, please tell a crew member.”

24Monday, August 19, 13

Insert your favorite bad design
here

l Might a prototype have helped matters?

25Monday, August 19, 13

Kinds of Prototypes
l There are a range of prototyping techniques, for a range of goals
l Ideally:

l Start with lightweight prototypes to communicate the “big picture”
l Move to more realistic ones as risk factors are mitigated and you need

to communicate about the details

l Fidelity in prototyping
l Fidelity is the level of detail in a prototype

l Low-fidelity: many details missing, maybe “sketchy” appearance
l High-fidelity: prototype looks like the final system on the surface

26Monday, August 19, 13

Low-fidelity Prototyping

l The lowest of the lo-fi: paper prototyping
l If you’ve ever designed a UI, this is probably something you’ve done

informally
l Capture overall layout

l Storyboards
l From the film and animation arts
l Capture behavior, not just appearance

l Goal: keep the design/implement/evaluate cycle as tight as possible
l These techniques do it by keeping the implementation phase small

27Monday, August 19, 13

Example: Simple Paper Prototype

1. Get image of iPaq
2. Cut out screen area
3. Make lots of copies
4. Fill in copies as needed

l Can be turned into storyboard
l Annotate controls with numbers
l Numbers lead to other sheets

28Monday, August 19, 13

A Few More Examples

29Monday, August 19, 13

Developing and Evaluating
Low-fidelity Prototypes

l Basic tools of the trade:
l Sketch large window areas on paper
l Put different screen regions (anything that changes) on cards
l Overlay cards on paper

l The copier is your friend:
l Can easily produce many design alternatives

l Evaluation: You can “run” your paper prototype
l The designer “simulates” the computer in front of a user
l Need to be ready for any user action (drop-down menus, etc.)

l Or, scan in sketches and create interactive PDF, as shown here:
l http://boxesandarrows.com/pdf-prototypes-mistakenly-disregarded-

and-underutilized/

30Monday, August 19, 13

http://boxesandarrows.com/pdf-prototypes-mistakenly-disregarded-and-underutilized/
http://boxesandarrows.com/pdf-prototypes-mistakenly-disregarded-and-underutilized/
http://boxesandarrows.com/pdf-prototypes-mistakenly-disregarded-and-underutilized/
http://boxesandarrows.com/pdf-prototypes-mistakenly-disregarded-and-underutilized/

High-fidelity Prototyping

l Once again, a range of practices that give you higher fidelity in
exchange for higher implementation time

l Tool-based approaches
l GUI builders
l Code-based approaches

l Downsides:
l Cost is the obvious one
l Also:

l Warp perceptions of the customer: elicit more comments on color,
fonts, etc.

l Attending to details can lose the big picture

31Monday, August 19, 13

Tool-based Prototyping

l Examples: Director, Flash, the Web

l Pros:
l Faster than writing code
l Easier to incorporate changes
l Often more reliable (hit the back button, rather than program crash)

l Cons:
l No easy way to transition to a finished product
l May not allow access to the full range of features available to the

finished product (e.g., may not be able to prototype networking, or
certain platform-specific features)

32Monday, August 19, 13

Example: Director

l Timeline editing, palettes of graphical widgets, etc.
l Emits a file that can be executed on any system that has the

required runtime engine
33Monday, August 19, 13

Example: OmniGraffle

l Drag graphics that depict GUI elements
onto canvases

l Canvases can be linked
l Example: Click on element A on canvas 3

goes to canvas 4
l Can emit an interactive set of web pages
l Mac only

l Visio is at least as powerful, tho

34Monday, August 19, 13

Example: Web Prototyping

l Web-based version of lo-fi prototype
shown earlier

l “Controls” simply link to another
page

l Allows fine-tuning of text, graphic
size, after behavior has been tested
on paper

l Can be done by hand or by web
development tools

35Monday, August 19, 13

GUI Builders

l A special class of tool for creating GUI systems
l Drag-and-drop “widgets” from a palette
l Emit code that you then edit: fill in the blanks
l Most pro dev environments have them (Xcode, VS, etc)

l Pros:
l Facilitate reasonably good transition to the final product
l What you get looks exactly like what the finished product will look like

l Cons:
l Still have to know a lot about programming
l AND have to know about programming peculiarities in the GUI builder

itself (can be very opaque)

36Monday, August 19, 13

Example: BX Pro

l Drag and drop graphical “widgets” onto a screen canvas
l Set properties of widgets
l Fill in C++ code for behavior

37Monday, August 19, 13

Code-based Prototypes

l This is what we’ll be focusing on, after this week
l Many approaches:

l Production languages (Java, C++, etc.)
l Scripting languages (Jython, Python, Visual Basic, AppleScript, TCL)

l There is often a fuzzy line between code and the use of tools
l Can often “drop down” to code to augment behavior

l Pros:
l Very high fidelity
l True interactivity
l Good transition to final system

l Cons:
l Cost, learning curve

38Monday, August 19, 13

Evaluating Hi-Fi Prototypes

l Some hi-fi prototypes are hi-fi-enough that standard HCI-style
analyses work fine

l But what if you don’t have all the necessary behaviors implemented?
l Answer: fake it!
l Wizard of Oz technique

l You are the person “behind the curtain”
l Provide simulation of missing implementation details as necessary
l Especially important for features that are hard to implement

l E.g., speech or handwriting recognition, activity sensing, intelligent
interfaces, etc.

39Monday, August 19, 13

Example: WoZ

l Wizard watches human input and explicitly controls the computer

Wizard (behind the curtain) Unsuspecting User

40Monday, August 19, 13

This Week’s Assignment

l Create a lo-fi paper or web prototype of the UI for the project
l This prototype will serve as the basis for the interactive UI we will

create in the first module
l Prototyping as a design tool, not an evaluation tool

l Requirements:
l Should show every screen/window that is reachable in the UI
l Identify all graphical elements
l Identify transitions between elements
l Should be sufficiently detailed that you could “run” a user through it, by

playing computer

l Submit to me by next Monday

41Monday, August 19, 13

Requirements for IM GUI

l Provide list of all online users
l Allow selection of one (or optionally, more) users
l Provide some control to initiate a chat

l Requested users should receive an invitation window
l Allow them to accept or reject the invitation to chat

l For each chat a user is engaged in, one chat window
l Text area that shows chat transcript of all parties
l Area to enter your text
l Provide some control for disconnection

l Other members of chat should receive notification upon disconnect
of another chat member

42Monday, August 19, 13

Connecting the Lo-Fi Prototype
with the Project

l A few points about the IM assignment
l The IM protocol we’ll be using doesn’t support

l Authentication/login
l Sending messages to a user before that user joins the chat
l Named, persistent chat rooms
l Buddies

l Some of these you can implement in your own client, even without
server support
l E.g., buffer messages sent to a user before he/she joins

43Monday, August 19, 13

Practicum

Getting set up for development
l Install Java, if you don’t already have it

l Macs: used to come with OS X, should get prompted to install it when
something tries to use Java

l Windows, Linux: See class website for URL
l Use Java earlier than v1.5.0 at your own risk
l Either the full Java Software Development Kit (JDK) or Java Runtime

Environment (JRE) should be sufficient

l Downloading Jython
l http://www.jython.org, click on Download (on the left)
l Jython 2.2.1 (or later)
l Should run on any platform that supports Java 1.2 or later

44Monday, August 19, 13

Practicum, cont’d

l Development environment
l I’m agnostic about which (if any) development environment you use
l Eclipse: much more complicated, but more “real”

l http://www.eclipse.org
l JEdit

l http://www.jedit.org -- used with some success last time
l Others:

l You’re more than welcome to use a simple text editor and command-
line Jython

l If you’re unsure what to use, or new to programming, my suggestion
is to use JEdit

45Monday, August 19, 13

http://www.jedit.org
http://www.jedit.org

