
M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 376

C H A P T E RC H A P T E R

1616Object-Oriented
Programming

16.1 HISTORY OF OBJECTS

16.2 WORKING WITH TURTLES

16.3 TEACHING TURTLES NEW TRICKS

16.4 AN OBJECT-ORIENTED SLIDE SHOW

16.5 OBJECT-ORIENTED MEDIA

16.6 JOE THE BOX

16.7 WHY OBJECTS?

Chapter Learning Objectives

• To use object-oriented programming to make programs easier to develop in
teams, more robust, and easier to debug.

• To understand such features of object-oriented programs as polymorphism,
encapsulation, inheritance, and aggregation.

• To be able to choose between different styles of programming for different
purposes.

16.1 HISTORY OF OBJECTS

The most common style of programming today is object-oriented programming.

We’re going to define it in contrast with the procedural programming that we’ve been

doing up until now.

Back in the 1960s and 1970s, procedural programming was the dominant form of

programming. People used procedural abstraction and defined lots of functions at high

and low levels, and reused their functions wherever possible. This worked reasonably

well—up to a point.As programs got really large and complex, with many programmers

working on them at the same time, procedural programming started to break down.

Programmers ran into problems with procedure conflicts. People would write pro-

grams that modified data in ways that other people didn’t expect. They would use the

same names for functions and find that their code couldn’t be integrated into one large

program.

There were also problems in thinking about programs and the tasks the programs

were supposed to perform. Procedures are about verbs—tell the computer to do this,

376

is265
Sticky Note
[TS: Change all closing double single quotes to double quotes]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 377

Section 16.1 History of Objects 377

tell the computer to do that. But it’s not clear whether that’s the way people think best

about problems.

Object-oriented programming is noun-oriented programming. Someone building an

object-oriented program starts by thinking about what the nouns are in the domain of the

problem—what are the people and things that are part of this problem and its solution?

The process of identifying the objects, what each of them knows about (with respect to

the problem), and what each of them has to do is called object-oriented analysis.

Programming in an object-oriented way means that you define variables (called

instance variables) and functions (called methods) for the objects. In the most object-

oriented languages, programs have very few or even no global functions or variables—

things that are accessible everywhere. In the original object-oriented programming

language, Smalltalk, objects could only get things done by asking each other to do things

via their methods.Adele Goldberg, one of the pioneers of object-oriented programming,

calls this “Ask, don’t touch.’’ You can’t just “touch’’ data and do whatever you want

with it—instead, you “ask’’objects to manipulate their data through their methods. That

is a good goal even in languages like Python or Java where objects can manipulate each

others’ data directly.

The term object-oriented programming was invented by Alan Kay. Kay is a bril-

liant multidisciplinary character—he holds undergraduate degrees in mathematics and

biology, a Ph.D. in computer science, and has been a professional jazz guitarist. In

2004, he was awarded the ACM Turing Award, which is sort of the Nobel Prize of

computing. Kay saw object-oriented programming as a way of developing software

that could truly scale to large systems. He described objects as being like biological

cells that work together in well-defined ways to make the whole organism work. Like

cells, objects would:

• Help manage complexity by distributing responsibility for tasks across many

objects rather than one big program.

• Support robustness by making the objects work relatively independently.

• Support reuse because each object would provide services to other objects (tasks

that the object would do for other objects, accessible through its methods), just as

real-world objects do.

The notion of starting from nouns is part of Kay’s vision. Software, he said, is

actually a simulation of the world. By making software model the world, it becomes

clearer how to make software. You look at the world and how it works, then copy that

into software. Things in the world know things—these become instance variables.

Things in the world can do things—these become methods.

Of course, we’ve been using objects already. Pictures, sounds, samples, and colors

are all objects. Our lists of pixels and samples are examples of aggregation, which

is creating collections of objects. The functions we’ve been using are actually just

covering up the underlying methods. We can just call the objects’ methods directly,

which we will do later in this chapter.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 378

378 Chapter 16 Object-Oriented Programming

16.2 WORKING WITH TURTLES

Seymour Papert, at MIT, used robot turtles to help children think about how to specify

procedures in the late 1960s. The turtle had a pen in the middle of it that could be raised

and lowered to leave a trail of its movements. As graphical displays became available,

he used a virtual turtle on a computer screen instead of a robotic turtle.

Part of the media support in JES provides graphical turtle objects. Turtles make a

great introduction to the ideas of objects. We manipulate turtle objects that move around

a world. The turtles know how to move and turn. The turtles have a pen in the middle of

them that leaves a trail to show their movements. The world keeps track of the turtles

that are in it.

16.2.1 Classes and Objects

How does the computer know what we mean by a turtle and a world? We have to define

what a turtle is, what it knows about, and what it can do. We have to define what a

world is, what it knows about, and what it can do. In Python we do this by defining

classes. A class defines what things or objects (instances) of that class know and can

do. The media package for JES defines classes that define what we mean by a turtle

and a world.

Object-oriented programs consist of objects. We create objects from classes. The

class knows what each object of that class needs to keep track of and what it should

be able to do. You can think of a class as an object factory. The factory can create

many objects. A class is also like a cookie cutter. You can make many cookies from

one cookie cutter and they will all have the same shape. Or you can think of the class

as a blueprint and the objects as the houses that you can create from the blueprint.

To create and initialize a world you use makeWorld(). To create a turtle object,

you can use makeTurtle(world). That looks pretty similar to makePicture and

makeSound—there is a pattern here, but we will introduce a new one, a more standard

Python syntax in just a bit. Let’s create a new world object.

>>> makeWorld ()

This will create a world object and display a window that shows the world. It will

just start as an all-white picture in a frame titled, “World.’’ But we can’t refer to it since

we didn’t name it.

Here we name the world object that gets created earth, and then create a turtle

object in the world named earth. We will name the turtle object tina.

>>> earth = makeWorld()

>>> tina = makeTurtle(earth)

>>> print tina

No name turtle at 320, 240 heading 0.0.

The turtle object appears in the center of the world (320, 240) and facing north

(a heading of 0) (Figure 16.1). The turtle hasn’t been assigned a name yet.

The turtle support in JES allows us to create many turtles. Each new turtle will appear

in the center of the world.

is3042
Highlight
[TS: Set in roman]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 379

Section 16.2 Working with Turtles 379

FIGURE 16.1
Creating a turtle in the world.

>>> sue = makeTurtle(earth)

16.2.2 Sending Messages to Objects

We can ask the turtle to do things by sending a message to the turtle object, which we

also think of as calling a method on an object. We do this using dot notation. In dot

notation we ask an object to do something by specifying the name of the object and

then a ‘.’ and then the function to execute (name.function(parameterList)). We

saw dot notation with strings in Section 10.3.1.

>>> tina.forward ()

>>> tina.turnRight ()

>>> tina.forward ()

Notice that only the turtle that we asked to do the actions moves (Figure 16.2). We

can make the other one move by asking it to do things as well.

>>> sue.turnLeft ()

>>> sue.forward (50)

Notice that different turtles have different colors (Figure 16.3).As you can see turtles

know how to turn left and right, using turnLeft() and turnRight(). They also can

go forward in the direction they are currently heading using forward(). By default

they go forward 100 pixels, but you can also specify how many pixels to go forward,

is265
Rectangle
[TS: Move this line to previous page (or) bring two lines of text from previous page here]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 380

380 Chapter 16 Object-Oriented Programming

FIGURE 16.2
Asking one turtle to move and turn, while the other one remains.

FIGURE 16.3
After the second turtle moves.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 381

Section 16.2 Working with Turtles 381

FIGURE 16.4
Turning a specified amount (−45).

forward(50). Turtles know how to turn a given number of degrees as well. Positive

amounts turn the turtle to the right and negative amounts to the left (Figure 16.4).

>>> tina.turn (-45)

.>> tina.forward ()

16.2.3 Objects Control Their State

In object-oriented programming we send messages to ask objects to do things. The

objects can refuse to do what you ask. An object should refuse if you ask it to do

something that would cause its data to be wrong. The world that the turtles are in is 640

pixels wide by 480 high. What happens if you try to tell the turtle to go past the end of

the world?

>>> world1 = makeWorld ()

>>> turtle1 = makeTurtle(world1)

>>> turtle1.forward (400)

>>> print turtle1

No name turtle at 320, 0 heading 0.0.

Turtles are first positioned at (320, 240) heading north (up). In the world the top left

position is (0, 0) and x increases to the right and y increases going down. By asking

the turtle to go forward 400, we are asking it to go to (320, 240 − 400) which would

result in a position of (320,−160) But, the turtle refuses to leave the world and instead

is265
Inserted Text
,

is265
Cross-Out

is265
Inserted Text
.

is3042
Cross-Out

is3042
Replacement Text
>



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 382

382 Chapter 16 Object-Oriented Programming

FIGURE 16.5
A turtle stuck at the edge of the world.

stops when the center of the turtle is at (320, 0) (Figure 16.5). This means we won’t

lose sight of any of our turtles.

The point of this exercise is to show how methods control access to the object’s data.

If you do not want variables to have certain values in its data, you control that through

the methods. The methods serve as the gateway to and gatekeeper for the object’s data.

Turtles can do lots of other things as well as go forward and turn. As you have

probably noticed when the turtles move they draw a line that is the same color as the

turtle. You can ask the turtle to pick up the pen using penUp(). You can ask the turtle

to put down the pen using penDown(). You can ask the turtle to move to a particular

position using moveTo(x,y). If the pen is down when you ask the turtle to move to

a new position, the turtle will draw a line from the old position to the new position

(Figure 16.6).

>>> worldX = makeWorld ()

>>> turtleX = makeTurtle(worldX)

>>> turtleX.penUp()

>>> turtleX.moveTo (0,0)

>>> turtleX.penDown ()

>>> turtleX.moveTo (639 ,479)

You can change the color of a turtle using setColor(color). You can stop drawing

the turtle using setVisible(false). You can change the width of the pen using

setPenWidth(width).

is265
Inserted Text
,



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 383

Section 16.3 Teaching Turtles New Tricks 383

FIGURE 16.6
Using the turtle to draw a diagonal line.

16.3 TEACHING TURTLES NEW TRICKS

We have already defined a Turtle class for you. But, what if you want to create your

own type of turtle and teach it to do new things? We can create a new type of turtle that

will understand how to do all the things that turtle knows how to do, and we can also

add some new functionality. This is called creating a subclass. Just like children inherit

eye color from their parents, our subclass will inherit all the things that turtles know

and can do. A subclass is also called a child class and the class that it inherits from is

called the parent class or superclass.

We call our subclass SmartTurtle. We add a method that allows our turtle to draw

a square. Methods are defined just like functions, but they are inside the class. Methods

in Python always take as input a reference to the object of the class that the method

is called on (usually called self). To draw a square our turtle will turn right and go

forward 4 times. Notice that we inherit the ability to turn right and go forward from the

Turtle class.

Program 147: Defining a Subclass

class SmartTurtle(Turtle ):

def drawSquare(self):

for i in range (0 ,4):

self.turnRight ()

self.forward () �



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 384

384 Chapter 16 Object-Oriented Programming

Since the SmartTurtle is a kind of Turtle, we can use it in much the same way.

But, we will need to create the SmartTurtle in a new way. We have been using

makePicture, makeSound, makeWorld, and makeTurtle to make our objects. These

are functions we have created to make it easier to make these objects. But, the actual

way in Python to create a new object is to use ClassName(parameterList). To create

a world you can use worldObj = World() and to create a SmartTurtle you can use

turtleObj = SmartTurtle(worldObj).

>>> earth = World()

>>> smarty = SmartTurtle(earth)

>>> smarty.drawSquare ()

Our SmartTurtle now knows how to draw a square (Figure 16.7). But, it can only

draw squares of size 100. It would be nice to be able to draw different size squares. We

can add another function that takes a parameter that specifies the width of the square.

FIGURE 16.7
Drawing a square with our SmartTurtle.

Program 148: Defining a Subclass

class SmartTurtle(Turtle ):

def drawSquare(self):

for i in range (0 ,4):



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 385

Section 16.3 Teaching Turtles New Tricks 385

self.turnRight ()

self.forward ()

def drawSquare(self , width):

for i in range (0 ,4):

self.turnRight ()

self.forward(width)

�

You can use this to draw different size squares (Figure 16.8).

>>> mars = World()

>>> tina = SmartTurtle(mars)

>>> tina.drawSquare (30)

>>> tina.drawSquare (150)

>>> tina.drawSquare (100)

FIGURE 16.8
Drawing different size squares.

16.3.1 Overriding an Existing Turtle Method

A subclass can redefine a method that already exists in the superclass. You might do

this to create a specialized form of the existing method.

Here’s the class ConfusedTurtle, which redefines forward and turn so that it

does the Turtle class’s forward and turn, but by a random amount. You use it just



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 386

386 Chapter 16 Object-Oriented Programming

like a normal turtle—but it won’t go forward or turn as much as you request. The below

example will have goofy go forward not-quite-100 and turn nowhere-near-90.

>>> pluto = World()

>>> goofy = ConfusedTurtle(pluto)

>>> goofy.forward (100)

>>> goofy.turn (90)

Program 149: ConfusedTurtle, Which Goes and Turns a Random Amount

import random

class ConfusedTurtle(Turtle ):

def forward(self ,num):

Turtle.forward(self ,int(num*random.random ()))

def turn(self ,num):

Turtle.turn(self ,int(num*random.random ()))
�

How It Works

We declare the class ConfusedTurtle to be a subclass of Turtle. We define two

methods in ConfusedTurtle: forward and turn. Like any other method, they take

self and whatever the method input is. In these cases, the input to both is a number,

num.

What we want to do is to call the superclass (i.e., Turtle) and have it do the normal

forward and turn, but with the input multiplied by a random number. Each method’s

body is only a single line, but it’s a fairly complicated line.

• We have to tell Python explicitly to call Turtle’s forward.

• We have to pass in self, so that the right object’s data gets used and updated.

• We multiply the input num by random.random(), but we need to convert it to

an integer (using int). The random number returned will be between 0 and 1

(a floating-point number), but we need an integer for forward and turn.

16.3.2 Using Turtles for More

Turtles have a bunch of methods that allow for interesting graphical effects. For

example, turtles are aware of each other. They can turnToFace(anotherTurtle)

to change the heading so that the turtle is “facing’’ another turtle (so that if keeps going

forward, it will reach the other turtle). In the below example, we set up four turtles

(al, bo, cy, and di) in four corners of a square, then repeatedly have them move

toward the one on the left. The result is Figure 16.9.

is3042
Highlight
[TS: Check and fix the correct font size]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 387

Section 16.3 Teaching Turtles New Tricks 387

FIGURE 16.9
Four turtles chasing each other.

Program 150: Chase Turtles

def chase ():

# Set up the four turtles

earth = World()

al = Turtle(earth)

bo = Turtle(earth)

cy = Turtle(earth)

di = Turtle(earth)

al.penUp()

al.moveTo (10 ,10)

al.penDown ()

bo.penUp()

bo.moveTo (10 ,400)

bo.penDown ()

cy.penUp()

cy.moveTo (400 ,10)

cy.penDown ()

di.penUp()

di.moveTo (400 ,400)



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 388

388 Chapter 16 Object-Oriented Programming

di.penDown ()

# Now , chase for 300 steps

for i in range (0 ,300):

chaseTurtle(al ,cy)

chaseTurtle(cy ,di)

chaseTurtle(di ,bo)

chaseTurtle(bo ,al)

def chaseTurtle(t1 ,t2):

t1.turnToFace(t2)

t1.forward (4)
�

How It Works

The main function here ischase(). The first few lines create a world and the four turtles,

and place each of them in the corners (10, 10), (10, 400), (400, 400), and (400, 10). For

300 steps (a relatively arbitrary number), each turtle is told to “chase’’ (chaseTurtle)

the one next to it, clockwise. So, the turtle that starts at (10, 10) (al) is told to chase

the turtle that starts at (10, 400) (cy). To chase means that the first turtle turns to face

the second turtle, then moves forward four steps. (Try different values—we liked the

visual effect of 4 the most.) Eventually, the turtles spiral in to the center.

These functions are valuable for creating simulations. Imagine that we had brown

turtles to act as deer, and gray turtles to act as wolves. Wolves would turnToFace

deer when they saw them, and chase them. To run away, deer might turnToFace an

oncoming wolf, then turn 180 and run away. Simulations are among the most powerful

and insight-providing uses of computers.

Computer Science Idea: Parameters Work a Bit Differently with Objects

When you call a function and pass in a number as an input, the parameter variable (the
local variable that accepts the input) essentially gets a copy of the number. Changing the
local variable does not change the input variable.

Look at the function chaseTurtle. When we call the function with
chaseTurtle(al,cy), we do change the position and heading of the turtle whose name
is al. Why is it so different? It isn’t really. The variable al doesn’t actually hold a turtle—it
holds a reference to a turtle. Think of it as an address (in memory) of where the turtle
object can be found. If you make a copy of an address, the address still references the
same place. The same turtle is being manipulated inside and outside the function. We still
can’t make a1 reference a new object from within a function like chaseTurtle. We can
only change the object that a1 references.

�

Turtles also know how to drop pictures. When a turtle drops a picture, the turtle

stays at the upper-left-hand corner of the picture—at whatever heading the turtle is

facing. (See Figure 16.10).

>>> # I chose Barbara.jpg for this

>>> p=makePicture(pickAFile ())

>>> # Notice that we make the World and Turtle here

>>> earth=World()

is265
Pencil
[TS: Move to next page]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 389

Section 16.3 Teaching Turtles New Tricks 389

>>> turtle=Turtle(earth)

>>> turtle.drop(p)

FIGURE 16.10
Dropping a picture on a world.

Turtles can also be placed on pictures, as well as World instances. When you put a

turtle on a picture, its body doesn’t show up by default (though you can make it visible)

so that it doesn’t mess up the picture. The pen is down, and you can still draw. Putting

a turtle on a picture means that we can create interesting graphics on top of existing

pictures or use existing pictures in your turtle manipulations.

One of our favorite techniques is spinning a picture: Have the turtle move a little, turn

a little, drop a copy of the picture, then keep going. Here’s an example Figure 16.11.

Below is the code that made the picture. We called it with the same picture of Barb

from the previous example, show(spinAPicture(p)).

Program 151: Spinning a Picture by Dropping It from a Turning Turtle

def spinAPicture(apic):

canvas = makeEmptyPicture (640 ,480)

ted = Turtle(canvas)

for i in range (0 ,360):

is3042
Highlight
[TS: Check and fix the correct font size]

is3042
Cross-Out

is3042
Replacement Text
h



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 390

390 Chapter 16 Object-Oriented Programming

ted.drop(apic)

ted.forward (10)

ted.turn (20)

return canvas
�

FIGURE 16.11
Dropping a picture on a picture, while moving and turning.

16.4 AN OBJECT-ORIENTED SLIDE SHOW

Let’s use object-oriented techniques to build a slide show. Let’s say that we want to

show a picture, then play a corresponding sound and wait until the sound is done before

going on to the next picture. We’ll use the function (mentioned many chapters ago)

blockingPlay(), which plays a sound and waits for it to finish before executing the next

statement.

Program 152: Slide Show As One Big Function

def playSlideShow ():

pic = makePicture(getMediaPath("barbara.jpg"))

sound = makeSound(getMediaPath("bassoon -c4.wav"))

is3042
Highlight
[TS: Check and fix the correct font size]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 391

Section 16.4 An Object-Oriented Slide Show 391

show(pic)

blockingPlay(sound)

pic = makePicture(getMediaPath("beach.jpg"))

sound = makeSound(getMediaPath("bassoon -e4.wav"))

show(pic)

blockingPlay(sound)

pic = makePicture(getMediaPath("church.jpg"))

sound = makeSound(getMediaPath("bassoon -g4.wav"))

show(pic)

blockingPlay(sound)

pic = makePicture(getMediaPath("jungle2.jpg"))

sound = makeSound(getMediaPath("bassoon -c4.wav"))

show(pic)

blockingPlay(sound)
�

This isn’t a very good program from any perspective. From a procedural program-

ming perspective, there’s an awful lot of duplicated code here. It would be nice to get rid

of it. From an object-oriented programming perspective, we should have slide objects.

As we mentioned, objects have two parts. Objects know things—these become

instance variables. Objects can do things—these become methods. We’re going to

access both of these using dot notation.

So what does a slide know? It knows its picture and its sound. What can a slide do?

It can show itself, by showing its picture and playing its sound.

To define a slide object in Python (and many other object-oriented programming

languages, including Java and C++), we must define a Slide class. We have already

seen a couple of class definitions. Let’s go through it again, slowly, building a class

from scratch.

As we have already seen, a class defines the instance variables and methods for a

set of objects—that is, what each object of that class knows and can do. Each object

of the class is an instance of the class. We’ll make multiple slides by making multiple

instances of the Slide class. This is aggregation: collections of objects, just as our

bodies might make multiple kidney cells or multiple heart cells, each of which knows

how to do certain kinds of tasks.

To create a class in Python, we start with:

class Slide:

What comes after this, indented, are the methods for creating new slides and playing

slides. Let’s add a show() method to our Slide class.

class Slide:

def show(self):

show(self.picture)

blockingPlay(self.sound)

To create new instances, we call the class name like a function. We can define new

instance variables by simply assigning them. So here is how to create a slide and give

it a picture and sound.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 392

392 Chapter 16 Object-Oriented Programming

>>> slide1=Slide()

>>> slide1.picture = makePicture(getMediaPath("barbara.jpg"))

>>> slide1.sound = makeSound(getMediaPath("bassoon-c4.wav"))

>>> slide1.show()

The slide1.show() function shows the picture and plays the sound. What is this

self stuff? When we execute object.method(), Python finds the method in the

object’s class, then calls it, using the instance object as an input. It’s Python style to

name this input variable self (because it is the object itself). Since we have the object

in the variable self, we can then access its picture and sound by saying self.picture

and self.sound.

But this is still pretty hard to use if we have to set up all the variables from the

Command Area. How could we make it easier? What if we could pass in the sound and

picture for the slides as inputs to the Slide class, as if the class were a real function?

We can do this by defining something called a constructor.

To create new instances with some inputs, we must define a function named

init . That’s “underscore-underscore-i-n-i-t-underscore-underscore.’’ It’s the

predefined name in Python for a method that initializes new objects. Our init

method needs three inputs: the instance itself (because all methods get that), a picture,

and a sound.

Program 153: A Slide Class

class Slide:

def __init__(self , pictureFile ,soundFile ):

self.picture = makePicture(pictureFile)

self.sound = makeSound(soundFile)

def show(self):

show(self.picture)

blockingPlay(self.sound)
�

We can use our Slide class to define a slide show like this.

Program 154: Playing a Slide Show, Using Our Slide Class

def playSlideShow2 ():

pictF = getMediaPath("barbara.jpg")

soundF = getMediaPath("bassoon -c4.wav")

slide1 = Slide(pictF ,soundF)

pictF = getMediaPath("beach.jpg")

soundF = getMediaPath("bassoon -e4.wav")

slide2 = Slide(pictF ,soundF)

pictF = getMediaPath("church.jpg")

soundF = getMediaPath("bassoon -g4.wav")

slide3 = Slide(pictF ,soundF)

pictF = getMediaPath("jungle2.jpg")

soundF = getMediaPath("bassoon -c4.wav")

is265
Sticky Note
[TS: Check and give minimum space above Programs in this page]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 393

Section 16.4 An Object-Oriented Slide Show 393

slide4 = Slide(pictF ,soundF)

slide1.show()

slide2.show()

slide3.show()

slide4.show()
�

One of the features of Python that make it so powerful is that we can mix object-

oriented and functional programming styles. Slides are now objects that can easily be

stored in lists, like any other kind of Python object. Here’s an example of the same slide

show where we use map to show the slide show.

Program 155: Slide Show, In Objects and Functions

def showSlide(aSlide ):

aSlide.show()

def playSlideShow3 ():

pictF = getMediaPath("barbara.jpg")

soundF = getMediaPath("bassoon -c4.wav")

slide1 = Slide(pictF ,soundF )

pictF = getMediaPath("beach.jpg")

soundF = getMediaPath("bassoon -e4.wav")

slide2 = Slide(pictF ,soundF)

pictF = getMediaPath("church.jpg")

soundF = getMediaPath("bassoon -g4.wav")

slide3 = Slide(pictF ,soundF)

pictF = getMediaPath("jungle2.jpg")

soundF = getMediaPath("bassoon -c4.wav")

slide4 = Slide(pictF ,soundF)

map(showSlide ,[slide1 ,slide2 ,slide3 ,slide4 ])
�

Is the object-oriented version of the slide show easier to write? It certainly has less

replication of code. It features encapsulation in that the data and behavior of the object

are defined in one and only one place, so that any change to one is easily changed in

the other. Being able to use lots of objects (like lists of objects) is called aggregation.

This is a powerful idea. We don’t always have to define new classes—we can often use

the powerful structures we know, like lists with existing objects, to great impact.

16.4.1 Making the Slide Class More Object-Oriented

What happens if we need to change the picture or sound of some class? We can. We

can simply change the picture or sound instance variables. But if you think about

it, you realize that that’s not very safe. What if someone else used the slide show and

decided to store movies in the picture variable? It could easily be made to work, but

now we have two different uses for the same variable.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 394

394 Chapter 16 Object-Oriented Programming

What you really want is to have a method that handles getting or setting a variable.

And if it becomes an issue that the wrong data is being stored in the variable, the

set-the-variable method can be changed to check the value, to make sure it’s the right

type and valid, before setting the variable. In order for this to work, everyone that uses

the class has to agree to use the methods for getting and setting the instance variables,

and not directly mess with the instance variables. In languages such as Java, one can

ask the compiler to keep instance variables private and do not allow any uses that

directly touch the instance variables. In Python, the best we can do is to create the

setting-and-getting methods and encourage their use only.

We call those methods (simply enough) setters and getters. Here is a version of the

class where we define setters and getters for the two instance variables—as you can

see, they are quite simple. Notice how we change the show and even the init

methods so that, as much as possible, we use the setters and getters instead of direct

access of the instance variables. This is the style of programming that Adele Goldberg

meant when she talked about, “Ask, don’t touch.’’

Program 156: Class Slide with Getters and Setters

class Slide:

def __init__(self , pictureFile ,soundFile ):

self.setPicture(makePicture(pictureFile ))

self.setSound(makeSound(soundFile ))

def getPicture(self):

return self.picture

def getSound(self):

return self.sound

def setPicture(self ,newPicture ):

self.picture = newPicture

def setSound(self ,newSound ):

self.sound = newSound

def show(self):

show(self.getPicture ())

blockingPlay(self.getSound ())
�

Here is something cool about our revised class. We don’t have to change anything

in our playSlideShow3 function. It just works, still, even though we made several

changes to how the class Slide works. We say that the function playSlideShow3 and

the class Slide are loosely coupled. They work together, in well-defined ways, but the

inner workings of either can change without impacting the other.

is3042
Highlight
[TS: Check and fix the correct font size]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 395

Section 16.5 Object-Oriented Media 395

16.5 OBJECT-ORIENTED MEDIA

As we said, we have been using objects throughout this book. We have been creating

Picture objects with the function makePicture. We can also create a picture using

the normal Python constructor.

>>> pic=Picture(getMediaPath("barbara.jpg"))

>>> pic.show()

Here’s how the function show() is defined. You can ignore raise and class .

The key point is that the function is simply executing the existing picture method show.

def show(picture ):

if not picture.__class__ == Picture:

print "show(picture ): Input is not a picture"

raise ValueError

picture.show()

We could have other classes that also know how to show. Objects can have their

own methods with names that other objects also use. Much more powerful is that each

of these methods with the same name can achieve the same goal, but in different ways.

We defined a class for slides, and it knew how to show. For both slides and pictures,

the method show() says, “Show the object.’’ But what’s really happening is different

in each case: pictures just show themselves, but slides show their pictures and play

their sounds.

Computer Science Idea: Polymorphism

When the same name can be used to invoke different methods that achieve the same
goal, we call that polymorphism. It’s very powerful for the programmer. You simply tell
an object show()—you don’t have to care exactly what method is being executed and
you don’t even have to know exactly what object it is that you’re telling the object to
show. You the programmer simply specify your goal, to show the object. The
object-oriented program handles the rest.

�

There are several examples of polymorphism built into the methods that we’re using

in JES.1 For example, both pixels and colors understand the methods setRed, getRed,

setBlue, getBlue, setGreen, and getGreen. This allows us to manipulate the colors

of the pixels without pulling out the color objects separately. We could have defined

the functions to take both kinds of inputs or to provide different functions for each kind

of input, but both of those options get confusing. It’s easy to do with methods.

>>> pic=Picture(getMediaPath("barbara.jpg"))

>>> pic.show()

>>> pixel = pic.getPixel (100 ,200)

>>> print pixel.getRed ()

73

1Recall that JES is an environment for programming in Jython, which is a specific kind of Python.

The media supports are part of what JES provides—they’re not part of the core of Python.

is3042
Pencil



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 396

396 Chapter 16 Object-Oriented Programming

>>> color = pixel.getColor ()

>>> print color.getRed ()

73

Another example is the method writeTo(). The method writeTo(filename) is

defined for both pictures and sounds. Did you ever confuse write-

PictureTo() and writeSoundTo()? Isn’t it easier to just always write

writeTo(filename)? That’s why that method is named the same in both classes,

and why polymorphism is so powerful. (You may be wondering why we didn’t intro-

duce this in the first place. Were you ready in Chapter 2 to talk about dot notation and

polymorphic methods?)

Overall, there are actually many more methods defined in JES than functions. More

specifically, there are a bunch of methods for drawing on pictures that aren’t available

as functions.

• As you would expect, pictures understand pic.addRect(color,x,y,width,

height), pic.addRectFilled(color,x,y,width,height), pic.addOval-

(color,x,y,width,height), and pic.addOvalFilled(color,x,y,width,

height).

See Figure 16.12 for examples of rectangle methods drawn from the following

example.

>>> pic=Picture (getMediaPath("640 x480.jpg"))

>>> pic.addRectFilled (orange ,10 ,10 ,100 ,100)

>>> pic.addRect (blue ,200 ,200 ,50 ,50)

>>> pic.show()

>>> pic.writeTo("newrects.jpg")

FIGURE 16.12
Examples of rectangle methods.

is265
Cross-Out

is265
Cross-Out



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 397

Section 16.5 Object-Oriented Media 397

FIGURE 16.13
Examples of oval methods.

See Figure 16.13 for examples of ovals drawn from the following example.

>>> pic=Picture (getMediaPath("640 x480.jpg"))

>>> pic.addOval (green ,200 ,200 ,50 ,50)

>>> pic.addOvalFilled (magenta ,10 ,10 ,100 ,100)

>>> pic.show()

>>> pic.writeTo("ovals.jpg")

• Pictures also understand arcs. Arcs are literally parts of a circle. The two meth-

ods are pic.addArc(color,x,y,width,height,startAngle,arcAngle)

and pic.addArcFilled(color,x,y,width,height,startAngle,arcAn-

gle). They draw arcs for arcAngle degrees, where startAngle is the start-

ing point. 0 degrees is at 3 o’clock on the clock face. A positive arc is counter

clockwise and negative is clockwise. The center of the circle is the middle of the

rectangle defined by (x, y) with the given width and height.

• We can also now draw colored lines, using pic.addLine(color,x1,y1,

x2,y2).

See Figure 16.14 for examples of arcs and lines drawn from the following

example.

>>> pic=Picture (getMediaPath("640 x480.jpg"))

>>> pic.addArc(red ,10 ,10 ,100 ,100 ,5 ,45)

>>> pic.show()

>>> pic.addArcFilled (green ,200 ,100 ,200 ,100 ,1 ,90)

>>> pic.repaint ()

>>> pic.addLine(blue ,400 ,400 ,600 ,400)

>>> pic.repaint ()

>>> pic.writeTo("arcs -lines.jpg")

is265
Pencil

is265
Rectangle
[TS: Avoid hyphen]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 398

398 Chapter 16 Object-Oriented Programming

FIGURE 16.14
Examples of arc methods.

• Text in Java can have styles, but these are limited to make sure that all platforms can

replicate them. pic.addText(color,x,y,string) is the one we would expect

to see. There is also pic.addTextWithStyle(color,x,y, string,style),

which takes a style created from makeStyle(font,emphasis, size). The font

is sansSerif, serif, or mono. The emphasis is italic, bold, or plain, or sum

them to get combinations (e.g., italic+bold. size is a point size).

See Figure 16.15 for examples of text drawn from the following example.

This is a red string!

This is a bold, italic, green, large string

This is a blue, larger, italic-only, serif string

FIGURE 16.15
Examples of text methods.

is265
Sticky Note
[TS: Move this figure exactly after coding in next page]

is265
Cross-Out

is265
Cross-Out

is265
Cross-Out



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 399

Section 16.5 Object-Oriented Media 399

>>> pic=Picture (getMediaPath("640 x480.jpg"))

>>> pic.addText(red ,10,100,"This is a red

string!")

>>> pic.addTextWithStyle (green ,10,200,"This is a

bold , italic , green , large string",

makeStyle(sansSerif , bold+italic ,18))

>>> pic.addTextWithStyle (blue ,10,300,"This is a

blue , larger , italic -only , serif string",

makeStyle(serif , italic ,24))

>>> pic.writeTo("text.jpg")

The older media functions that we wrote can be rewritten in method form. We will

need to create a subclass of the Picture class and add the method to that class.

Program 157: Making a Sunset Using a Method

class MyPicture(Picture ):

def makeSunset(self):

for p in getPixels(self):

p.setBlue(int(p.getBlue ()*0.7))

p.setGreen(int (p.getGreen ()*0.7))
�

This can be used like this.

>>> pict = MyPicture(getMediaPath("beach.jpg"))

>>> pict.explore ()

>>> pict.makeSunset ()

>>> pict.explore ()

We can also create new subclasses of the Sound class and new methods to work on

sound objects. The methods for accessing sound sample values are getSampleValue()

and getSampleValueAt(index).

Program 158: Reverse a Sound with a Method

class MySound(Sound):

def reverse(self):

target = Sound(self.getLength ())

sourceIndex = self.getLength () - 1

for targetIndex in range(0,target.getLength ()):

sourceValue = self.getSampleValueAt(sourceIndex)

target.setSampleValueAt(targetIndex ,sourceValue)

sourceIndex = sourceIndex - 1

return target
�

This can be used like this.

>>> sound = MySound(getMediaPath("always.wav"))

>>> sound.explore ()

>>> target = sound.reverse ()

>>> target.explore ()

is265
Line
[TS: Place figure 16.15 exactly here]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 400

400 Chapter 16 Object-Oriented Programming

16.6 JOE THE BOX

The earliest example used to teach object-oriented programming was developed by

Adele Goldberg and Alan Kay. It’s called Joe the Box. There is nothing new in this

example, but it does provide a different example from another perspective, so it’s

worth reviewing.

Imagine that you have a class Box like the one below:

class Box:

def __init__(self):

self.setDefaultColor ()

self.size =10

self.position =(10 ,10)

def setDefaultColor(self):

self.color = red

def draw(self ,canvas ):

addRectFilled(canvas , self.position [0],self.

position [1], self.size , self.size , self.color)

What will you see if you execute the following code?

>>> canvas = makeEmptyPicture (400 ,200)

>>> joe = Box()

>>> joe.draw(canvas)

>>> show(canvas)

Let’s trace it out.

• Obviously, the first line just creates a white canvas that is 400 pixels wide and

200 pixels high.

• When we create joe, the init method is called. The method setDefault

Color is called on joe, so he gets a default color of red. When self.color=red

is executed, the instance variable color is created for joe and gets a value of red.

We return to init , where joe is given a size of 10 and a position of (10,10)

(size and position both become new instance variables).

• When joe is asked to draw himself on the canvas, he’s drawn as a red, filled

rectangle (addRectFilled), at x position 10 and y position 10, with a size of 10

pixels on each side.

We could add a method to Box that allows us to make joe change his size.

class Box:

def __init__(self):

self.setDefaultColor ()

self.size =10

self.position =(10 ,10)

def setDefaultColor(self):

self.color = red

def draw(self ,canvas ):

addRectFilled(canvas , self.position [0],self.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 401

Section 16.7 Why Objects? 401

position [1], self.size , self.size , self.color)

def grow(self ,size):

self.size=self.size+size

Now we can tell joe to grow. A negative number like −2 will cause joe to shrink.

A positive number will cause joe to grow—though we’d have to add a move method

if we wanted him to grow much and still fit on the canvas.

Now consider the following code added to the same Program Area.

class SadBox(Box):

def setDefaultColor(self):

self.color=blue

Note that SadBox lists Box as a superclass (parent class). This means that SadBox

inherits all the methods of Box. What will you see if you execute the code below?

>>> jane = SadBox ()

>>> jane.draw(canvas)

>>> repaint(canvas)

Let’s trace it out:

• When jane is created as a SadBox, the method init is executed in class Box.

• The first thing that happens in init is that we call setDefaultColor on the

input object self. That object is now jane. So we call jane’s setDefaultColor.

We say that SadBox’s setDefaultColor overrides Box’s.

• The setDefaultColor for jane sets the color to blue.

• We then return to executing the rest of Box’s init . We set jane’s size to

10 and position to (10,10).

• When we tell jane to draw, she appears as a 10 × 10 blue square at position

(10,10). If we haven’t moved or grown joe, he will disappear as jane is drawn

on top of him.

Note that joe and jane are each a different kind of Box. They have the same instance

variables (but different values for the same variables) and mostly know the same things.

Because both understand draw, for example, we say that draw is polymorphic. The word

polymorphic just means many forms.

A SadBox (jane) is slightly different in how it behaves when it created, so it knows

some things differently. Joe and Jane highlight some of the basic ideas of object-oriented

programming: inheritance, specialization in subclasses, and shared instance variables

while having different instance variable values.

16.7 WHY OBJECTS?

One role for objects is to reduce the number of names that you have to remember.

Through polymorphism, you only have to remember the name and the goal, not all the

various global functions.



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 402

402 Chapter 16 Object-Oriented Programming

More importantly, though, objects encapsulate data and behavior. Imagine that you

wanted to change the name of an instance variable and then all the methods that use

the variable. That’s a lot to change. What if you miss one? Changing them all in one

place, together, is useful.

Objects reduce the coupling between program components, that is, how dependent

they are on each other. Imagine that you have several functions that all use the same

global variable. If you change one function so that it stores something slightly different

in that variable, all the other functions must also be updated or they won’t work. That’s

called tight coupling. Objects that only use methods on each other (no direct access

to instance variables) are more loosely coupled. The access is well-defined and easily

changed in only one place. Changes in one object do not demand changes in other

objects.

An advantage of loose coupling is ease in developing in team contexts. You can have

different people working on different classes.As long as everyone agrees on how access

will work through methods, nobody has to know how anybody else’s methods work.

Object-oriented programming can be particularly useful when working on teams.

Aggregation is also a significant benefit of object systems. You can have lots of

objects doing useful things. Want more? Just create them!

Python’s objects are similar to the objects of many languages. One significant dif-

ference is in access to instance variables, though. In Python, any object can access

and manipulate any other object’s instance variables. That’s not true in languages like

Java, C++, or Smalltalk. In these other languages, access to instance variables from

other objects is limited and can even be eliminated entirely—then you can only access

objects’ instance variables through getter and setter methods.

Another big part of object systems is inheritance. As we saw with our turtle and

box examples, we can declare one class (parent class) to be inherited by another class

(child class) (also called superclass and subclass). Inheritance provides for instant

polymorphism—the instances of the child automatically have all the data and behavior

of the parent class.The child can then add more behavior and data to what the parent class

had. This is called making the child a specialization of the parent class. For example,

a 3-D rectangle instance might know and do everything that a rectangle instance does

by saying class Rectangle3D(Rectangle).

Inheritance gets a lot of press in the object-oriented world but it’s a trade-off. It

reduces even further the duplication of code, which is a good thing. In actual practice,

inheritance isn’t used as much as other advantages of object-oriented programming

(like aggregation and encapsulation), and it can be confusing. Whose method is being

executed when you type the below? It’s invisible from here, and if it’s wrong, it can be

hard to figure out where it’s wrong.

myBox = Rectangle3D ()

myBox.draw()

So when should you use objects? You should define your own object classes when

you have data and behavior that you want to define for all instances of the group

(e.g., pictures and sounds). You should use existing objects all the time. They’re very

powerful. If you’re not comfortable with dot notation and the ideas of objects, you



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 403

Problems 403

can stick with functions—they work just fine. Objects just give you a leg up on more

complex systems.

PROGRAMMING SUMMARY

Some of the programming pieces that we met in this chapter.

OBJECT-ORIENTED PROGRAMMING

class Lets you define a class. The keyword class takes a class name and an

optional superclass in parentheses, ending with a colon. Methods for the

class follow, indented within the class block.

init The name of the method called on an object when it’s first created. It’s not

required to have one.

GRAPHICS METHODS

addRect,

addRectFilled

The methods in the Picture class for drawing rectangles and filled

rectangles.

addOval,

addOvalFilled

The methods in thePicture class for drawing ovals and filled ovals.

addArc,

addArcFilled

The methods in the Picture class for drawing arcs and filled arcs.

addText, addText-

WithStyle

The methods in the Picture class for drawing text and text with

style elements (like boldface or sans serif).

addLine The method in the Picture class for drawing a line.

getRed, getGreen,

getBlue

The methods for both Pixel and Color objects for getting the red,

green, and blue color components.

setRed, setGreen,

setBlue

The methods for both Pixel and Color objects for setting the red,

green, and blue color components.

PROBLEMS

16.1 Answer the following questions.

• What is the difference between an instance and a class?

is265
Pencil



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 404

404 Chapter 16 Object-Oriented Programming

• How are functions and methods different?

• How is object-oriented programming different from procedural program-

ming?

• What is polymorphism?

• What is encapsulation?

• What is aggregation?

• What is a constructor?

• How did biological cells influence the development of the idea of objects?

16.2 Answer the following questions.

• What is inheritance?

• What is a superclass?

• What is a subclass?

• What methods does a child class inherit?

• What instance variables (fields) does a child class inherit?

16.3 Add a method to the Turtle class to draw an equilateral triangle.

16.4 Add a method to the Turtle class to draw a rectangle given a width and height.

16.5 Add a method to the Turtle class to draw a simple house. It can have a

rectangle for the house and an equilateral triangle as the roof.

16.6 Add a method to the Turtle class to draw a street of houses.

16.7 Add a method to the Turtle class to draw a letter.

16.8 Add a method to the Turtle class to draw your initials.

16.9 Create a movie with several turtles moving in each frame.

16.10 Add another constructor to the Slide class that takes just a picture filename.

16.11 Create a SlideShow class that holds a list of slides and shows each slide one

at a time.

16.12 Create a CartoonPanel class that takes an array of Pictures and displays

the pictures from left to right. It should also have a title and author and display

the title at the top left edge and the author at the top right edge.

16.13 Create a Student class. Each student should have a name and a picture. Add

a method, show, that shows the picture for the student.

16.14 Add a field to the SlideShow class to hold the title and modify the showmethod

to first show a blank picture with the title on it.

16.15 Create a PlayList class that takes a list of sounds and play them one at a time.

16.16 Use the methods in the Picture class to draw a smiling face.

16.17 Use the methods in the Picture class to draw a rainbow.

16.18 Rewrite the mirror functions as methods in the MyPicture class.

16.19 Make some modifications to Joe the Box.

is265
Pencil
[TS: Take back to previous page]



M01_GUZD3514_03_SE_C16 30/1/2012 19:27 Page 405

To Dig Deeper 405

• Add a method toBox named setColor that takes a color as input, then makes

the input color the new color for the box. (Maybe setDefaultColor should

call setColor?)

• Add a method to Box named setSize that takes a number as input, then

makes the input number the new size for the box.

• Add a method to Box named setPosition that takes a list or tuple as a

parameter, then makes that input the new position for the box.

• Change init so that it uses setSize and setPosition rather than

simply setting the instance variables.

*16.20 Finish the Joe the Box example.

(a) Implement grow and move. The method move takes as input a relative

distance like (−10,15) to move 10 pixels left (x position) and 15 pixels

down (y position).

(b) Draw patterns by creating joe and jane, then move a little and draw, grow

a little and draw, then repaint the new canvas.

16.21 Create a movie with boxes growing and shrinking in it.

TO DIG DEEPER

There is lots more to do with Python in exploring procedural, functional, and object-

oriented programming styles. Mark recommends the books by Mark Lutz (especially

[30]) and Richard Hightower [24] as nice introductions to the deeper realms of Python.

You might also explore some of the tutorials at the Python Web site (http://www.

python.org).

is265
Highlight
AU: Please provide significance for the *.




