Physics Engines

Jeff Wilson jeff@bitc.gatech.edu

Maribeth Gandy maribeth@cc.gatech.edu

Clint Doriot clint.doriot@gtri.gatech.edu

What is a Physics Engine?

- Provides physics simulation in a virtual environment
- High Precision vs. Real Time
- Real Time requires a lot of approximations
- Can be used in creative ways

http://www.youtube.com/watch?v=2FMtQuFzjAc

Real Time Physic Engines

- Havok (commercial), Newton (closed source), Open Dynamics Engine (ODE) (open source), Aegia PhysX (accelerator board available)
- Unity
 - PhysX integration
 - Rigidbodies
 - Soft Bodies
 - Joints
 - Ragdoll Physics
 - Cloth
 - Cars

http://docs.unity3d.com/

Documentation/Manual/Physics.html

CS 4455

Concepts

- Forces
- Rigid Bodies
 - Box, sphere, capsule, character mesh etc.
- Constraints
- Collision Detection
 - $_{\odot}$ Can be used by itself with no dynamics

Bodies

- Rigid
- Movable (Dynamic)
 - $_{\circ}$ Kinematic
 - O Unity's IsKinematic = false
 - You are not controlling the velocity & position, Unity is doing that
- Unmovable (Static)
 - Infinite mass
- Properties
 - Mass, dynamic/static friction, restitution (bounciness), softness
 - Anisotropic friction (skateboard)
 - Mesh shapes with per triangle materials (terrain)

Bodies

- Position
- Orientation
- Velocity
- Angular Velocity
- These values are a result of forces

Collisions

- Bounding boxes (collision hulls) reduce complexity of collision calculation
 - $_{\rm \circ}~$ Made from the primitives mentioned before
 - Boxes, capsules etc.
- How your model is encapsulated determines accuracy, and computational requirements
- Collision groups
 - Tweak simulation, game play, path planning

Forces

- Force
 - o constant
- Impulse
 - Instantaneous
- Vector and magnitude
- Acceleration and smooth options available
- Torque (spin)

Connectors

- Joints
 - Restrict motion between actors, rotation and translation
 - Constraints
 - Projection mode (amount of joint separation allowed)
 - Actors collidable or not (bendable)
 - \circ Restitution
 - Revolute (hinge)
 - Spherical (three degrees of freedom)
 - Prismatic (shock absorber), cylindrical joints
 - Point on line (shower curtain)
 - \circ Pulley

Connectors

- Spring
 - Joint with natural resting angle
 - \circ Force
 - Damping
- Joint Motor (apply relative torque)
- Breakable joints (max force, max torque)

Constraints

- Hard
 - \circ Never violated
 - $_{\circ}~$ In reality will be violated by errors in simulation
- Soft
 - Designed to be violated
- Joint constraints
 - Degrees of freedom, linear/angular amounts
- Freeze flags (position and rotation)
- Linear and angular damping
 - $_{\odot}$ In absence of friction and collision (wind resistance)

Deactivation

- Limit actors awake in simulation
- Sleep linear and angular velocity
- Bounce threshold (stops vibration)

Ragdoll Physics

- Create human and other figures that move realistically
- Simplified skeleton
 - Collection of rigid bodies (bones)
 - Connected by hinges or springs (joints)
 - Joints have no stiffness
 - Hence "ragdoll"
 - kinematic objects useful
- "Trespasser" first game to use
- Complex to combine this with animations
 - Blended ragdoll
 - <u>http://www.toribash.com/</u>
- Other complex constructions made from components
 - Rope, grass, cloth, particles systems, vehicles

http://docs.unity3d.com/Documentation/ Components/wizard-RagdollWizard.html

CS 4455

Putting it all in motion

- Set gravity vector
- Apply forces to bodies
- Adjust joint parameters as necessary
- Call collision detection
- Step the simulation based on time
 - $_{\odot}~$ Tradeoff of speed and accuracy
 - Substeps
 - Fixed update
- Keep the graphics object and physics object in synch
- Deactivate objects (manually or automatically)

Why does my simulation look wrong?

- Scale of your objects and world
 - May look wrong
 - May cause anomalies in simulation
- Disconnect between graphics and physics world
- Slow downs due to number of active objects
- Properties and their interactions also may result in strange results
 - Mass, Friction, magnitude of forces etc.
 - Velocities too fast for timestep
 - Whips
- Collision detection may break down
 - \circ interpenetration
- Must move objects using the functionality of the physics engine. No "hand of god" behavior

Things you can do with a Physics Engine

- Detect collisions
- Simulate rigid bodies under the influence of forces
- Spring-mass systems
- Destructible buildings and structures
- Ray / Shape casting
- Trigger Volumes
- Complex machines (cranes, moving platforms, pulleys, etc)
- Traps (avalanche of boulders)
- Drivable vehicles
- Rag doll characters
- Powered rag dolls
- Dangling props
- Cloth
- Fluid Simulations
- Water surface simulations and buoyancy
- Audio propagation

CS 4455

Making it fun

• Factors

- Quality of the simulation
- Integration with other systems
- **o** Selection of physics driven gameplay elements
- Genres
 - Simulations
 - Physics Puzzle Game
 - Sandbox Games
 - Goal-based or Story-driven games?
 - Trade off in control and realism
- Design Impacts
 - Predictability
 - Turning and control
 - Emergent behaviors
 - Non-static game environments