
Multiplayer Games and
Networking

2

Overview

n  Multiplayer Modes
n  Networking Fundamentals
n  Networking for Games
n  Networking for Unity

Early forms of Multiplayer:
Turn Based

n  Easier to implement
n  Puzzle / board game
n  Non-real time connection

n  Floppy Disks, Email
n  Database (Door Games)

3

Early forms of Multiplayer:
Real Time

n  Shared I/O
n  Input Devices

n  Shared Keyboard layout
n  Multiple Device Mapping

n  Display
n  Full Screen vs Split Screen

4

5

Multiplayer Modes:
Connectivity

n  Non Real-Time
n  (turn based)

n  Direct Link
n  Serial, USB, IrD, … (no hops)

n  Circuit Switched (phones)
n  Dedicated line with consistent

latency

n  Packet Switched
n  Internet
n  Shared Pipe

6

Multiplayer Modes:
now with Networking!

n  Difficulty based on Event Timing
n  Turn-Based

n  Any connection type

n  Real-Time
n  More data to sync
n  Latency sensitive

Networking:
When do we need it?

n  Single Player Games?
n  Leaderboards and trophies
n  Online data stores

n  (PS+, Steam Cloud)

n  Downloadable content
n  DRM

n  Multiplayer
n  Most AAA titles moving toward multiplayer
n  * or at least, single player + 7

“Portal 2 will
probably be Valve's
last game with an
isolated single-
player experience” *

Networking
At a glance

n  Connection between multiple computers
n  Transmission of data
n  How do we design a system that can do….

n  Packet Length Conveyance
n  Acknowledgement Methodology
n  Error Checking / Correcting
n  Compression
n  Encryption
n  Packet Control

8

9

Protocol Stack:
Open System Interconnect

Router

Sender Receiver

Network

Data Link

Physical

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Game Events

Game Packetization

Connection & Data Exchange

Input Updates
State Updates

Serialization
Buffering

Sockets

TCP
UDP

IP

Ethernet (MAC)

Wired (C5, Cable)
Fiber Optics
Wireless

10

Physical Layer
n  Bandwidth

n  Width of data pipe
n  Measured in bps = bits per second

n  Latency
n  Travel time from point A to B
n  Measured in Milliseconds

n  The Medium
n  Fiber, FireWire, IrD , CDMA & other cell

Serial USB
1&2 ISDN DSL Cable

LAN
10/100/1G

BaseT
Wireless
802.11
a/b/g

Power
Line T1

Speed
(bps) 20K 12M

480M 128k 1.5M down
896K up

3M down
256K up

10M
100M

1G
b=11M

a,g=54M 14M 1.5M

Table: Max Bandwidth Specifications

11

Data Link Layer

n  Serializes data to/from physical layer
n  Network Interface Card

n  Ethernet
n  MAC Address

12

Network Layer

n  Packet Routing
n  Hops

n  No connection
n  Guarantees sending
n  Doesn’t guarantee receiving
n  Non-deterministic path

n  Routers, Hubs, Switches

n  Internet Protocol (IP)
n  Contains Source & Destination IP Address
n  IPv4 vs IPv6

n  Unicast, Broadcast, Loop back

13

Network Layer:
Domain Name Service

n  Domain Name Service
n  Converts text name to IP address
n  Must contact one or more DNS servers to resolve
n  Local cache resolution possible

n  Game Tips
n  Store local game cache to use when DNS out of

order.
n  DNS resolution often slow, use cache for same day

resolution.

14

Transport Layer

n  Manage data deliver between endpoints
n  Error recovery
n  Data flow

n  TCP and UDP used with IP
n  Contains Source and Destination Port

n  Port + IP = Net Address
n  Port Range = 0-64k
n  Well known Ports 0-1k

n  http, ftp, ssh, …

15

Transport Layer:
Transmission Control Protocol

n  Connection based
n  Keep Alive
n  Handles breaking up data into correct size
n  Packet window
n  Packet Coalescense

n  Guaranteed, in order delivery
n  ack, nack, resend

n  Flow Control
n  Easy to use

n  Reading and writing, just like a file

n  Requires more header data

16

Transport Layer:
User Datagram Protocol
n  No connection
n  No guarantees

n  May not arrive
n  TTL (time to live) – hop count limit

n  May not arrive in order
n  May arrive multiple times
n  Source not verified

n  Datagram
n  Sent in packets exactly as user sends them

n  Capable of broadcasting

17

Transport Layer:
TCP vs UDP
n  Which to use?

n  Depends on the game!
n  TCP

n  Turn based games, leader boards
n  UDP

n  More common, especially for time sensitive games
n  Add TCP features as needed
n  Unity uses UDP, with features for reliable, in order

transmission

18

Session Layer

n  Manages Connections between Apps
n  Connect
n  Terminate
n  Data Exchange

n  Socket API live at this layer
n  Cross platform
n  Cross language

19

Session Layer:
Sockets

n  Based on File I/O
n  File Descriptors
n  Open/Close
n  Read/Write

n  Modes
n  Blocking

n  Use in separate thread

n  Non-blocking
n  Poll the socket periodically

20

Presentation Layer

n  Prepares App Data for Transmission
n  Compression
n  Encryption
n  Endian Order

n  0b1000 vs 0b0001
n  Serialize
n  Buffering

n  Packet Coalescense
n  Increased Latency
n  Store local data and wait

21

Application Layer

n  Interfaces with user
n  Handles game logic
n  Transmits the right data
n  … at the right time…
n  …to the right person

22

Protocol Stack:
Open System Interconnect

Router

Sender Receiver

Network

Data Link

Physical

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Game Events

Game Packetization

Connection & Data Exchange

Input Updates
State Updates

Serialization
Buffering

Sockets

TCP
UDP

IP

Ethernet (MAC)

Wired (C5, Cable)
Fiber Optics
Wireless

Application Set

Game Engine

Your Game Logic

Networking for Games

n  Who are we communicating with?
n  What data needs to be sent?
n  How often do we need to send it?
n  How do we protect that data?
n  How do we handle conflicts?

n  (Looking at non-trivial real time
applications)

23

24

Connection Models

n  Broadcast
n  Good for player discovery on LANs

n  Peer to Peer
n  Good for 2 player games

n  Client / Server
n  Good for 2+ player games
n  Dedicated lobby server great for player

discovery

25

Peer to Peer vs. Client/Server

Broadcast Peer/Peer Client/Server

Connections 0 Client = 1
Server = N

N = Number of players

Broadcast Peer/Peer Client/Server

Send 1 N-1 Client = 1
Server = N

Receive N-1 N-1 Client = 1
Server = N

∑
−

=

1

1

N

x

x

P1 P2

P1

P2 P3

P1 P4

P2 P3

P1

P2 P5

P3 P4

2 players
1 connection

3 players
3 connections

4 players
6 connections

5 players
10 connections

26

Client / Server Architecture

n  Clients connect to Server
n  Server handles all communication between clients
n  “UDP Connection”

n  Small high frequency packets (20-30 /sec)
n  Packet based comm results in new challenges

n  Packet loss
n  Especially if client asks for higher rate then their

connection can handle

n  Inherent latency
n  Bandwidth + Latency => Lag => Player frustration
n  Varies from client to client

27

Client / Server:
Authoritative vs. Non-Authoritative

n  Authoritative
n  Clients send inputs to server
n  Server does all input processing, world simulation, application of data rules
n  Server tells client what happened
n  Client only collects data and renders results!

n  Non-Authoritative
n  Clients process user data, applies logic, updates the server
n  Clients have control of their specific objects
n  Server acts as a relay

n  Can you trust clients?

28

Client / Server:
Communication Methods

n  Remote Procedure Calls
n  Invoke functions on another machine

n  Client to server
n  Server to a client
n  Server to a set (possibly all) clients

n  Used for infrequent actions and events
n  Loading levels
n  State of infrequently changed object

29

Client / Server:
Communication Methods

n  Update Models
n  Input Reflection

n  Authoritative server mode
n  Slightly process input data
n  People notice delay of 0.1s
n  Synchronous (wait for data from everyone)
n  Asynchronous (predict input)

n  Not appropriate for input reflection

n  Low and consistent latency
n  Seed rand() with same seed on all computers
n  Don’t use system time for calculations

30

Client / Server:
Communication Methods

n  Update Models
n  State Reflection

n  Both server modes

n  Update position, rotation, velocity….
n  Larger packets

n  Prioritize
n  Server Distributed Object System

31

Client / Server:
Server Distributed Object System

n  Relevance Sets
n  Object Views

n  Objects consist of three major groups of data
n  Visual & Display

n  always

n  Game logic & AI
n  Seldom

n  Housekeeping
n  never

32

Client / Server:
Server Distributed Object System

n  Synchronization
n  The “art” of network programming
n  Dead Reckoning

n  Works fine until drastic change
n  AI Assist

n  Help transition between waypoints
n  Might cause slight synch problems

n  Arbitration
n  Weighted decision to correct outcome
n  Server is dictator
n  Client might delay critical event while waiting

33

Client / Server:
Sync Optimizations Techniques

n  Solutions (Valve’s Source Engine)
n  Delta compression
n  Interpolation
n  Prediction
n  Lag compensation

34

Client / Server:
Sync Optimizations Techniques

n  Delta compression
n  Only send newly updated information
n  Approach used for other types of streaming data
n  Acknowledgement numbers used to keep track of

flow
n  Client can request full snapshot when problems

occur

35

Client / Server:
Sync Optimizations Techniques

n  Interpolation
n  Snapshot updating results in jerky jittery graphics
n  Interpolate between current snapshot and

previous
n  Client runs 100 ms behind
n  Will work with one lost packet
n  Two lost packets will cause errors

36

Client / Server:
Sync Optimizations Techniques

n  Prediction
n  Player will notice 100 ms delay in own input
n  Client side input prediction
n  Client predicts where player should be using same

logic as server
n  When snapshot comes they are compared

n  May be different since server has more information than
client

n  Client must correct
n  Smoothing used to make correction less noticeable

37

Client / Server:
Sync Optimizations Techniques

n  Lag compensation
n  When my shot information

arrives at server, enemy has
moved

n  Server compensates
n  Maintains history of all player

positions
n  Looks back in time for player

position at time of shot

38

Cheating

n  Why not client do hit detection?
n  Client can’t be trusted
n  Cheat proxy

n  “man in the middle”
n  Valve’s-Anti-Cheat
n  Blizzard’s Warden

39

Cheating

n  Material hacks (wallhacking)
n  Aim and trigger bots

n  Color based. Old versions (Quake etc.)
replace models with colored ones, used
algorithm to scan screen.

n  Can end up aiming at other stuff in the scene

n  Client hook versions use information on the
player positions

n  Graphics Driver versions. Get 3D values from
renderer and convert to mouse coordinates

40

Security

n  Console network stacks
n  provide additional

security functions

n  Intel Fair Online Gaming
n  Hardware, firmware, and

game software on client

41

Security

n  Encryption
n  Preserve integrity of network traffic
n  Efficiency vs Security

n  Execution Cryptopgraphy
n  Prevent reverse engineering to edit game data

n  Copy Protection
n  DRM
n  Code sheets
n  Active internet connection

42

Networking for Unity

n  This is not a substitute for reading
Unity’s documentation!

n  UDP based
n  Client / Server

n  No dedicated server software
n  Authoritative vs. Non-Authoritative

n  Game Lobby

43

Networking for Unity

n  Network Views
n  Required component for transmitting data
n  Not same as an “Object View”, but required to

create them in code
n  RPC
n  State Synchronization

n  Reliable Delta Compressed
n  Unreliable

n  Tutorials for prediction, lag compensation,
interpolation, etc.

44

Networking for Unity:
3rd Party MMEs

n  Massively Multiplayer Engines
n  Photo, SmartFox, Electroserver, …

n  Higher scalability
n  API for Unity
n  Re-implementing Object View structures

45

Networking in your game

n  Read Unity’s documentation first!
n  Overview
n  API for networking classes

n  Check out the tutorials
n  Unity’s networking tutorials
n  Other’s available online ($$$?)

n  Get something working
n  Then test the different options

46

References:
Networking Overview

n  Source Engine Overview
n  http://developer.valvesoftware.com/wiki/

Source_Multiplayer_Networking
n  Overview, Delta Compression, Interpolation, etc.

n  Relevance Sets / Object Views
n  http://www.gamasutra.com/resource_guide/20020916/

lambright_01.htm

n  Glenn Fiedler Overview
n  http://gafferongames.com/networking-for-game-programmers/
n  Includes articles on cross-platforms low level implementation (stuff

that Unity already does for you)

47

References:
Unity

n  Documentation
n  http://unity3d.com/support/documentation/Manual/Networked

%20Multiplayer.html
n  http://forum.unity3d.com/threads/29015-UniKnowledge-entry-

Unity-Networking-the-Zero-to-Hero-guide

n  Example / Tutorials
n  http://www.palladiumgames.net/tutorials/unity-networking-tutorial/
n  http://answers.unity3d.com/storage/temp/13488-networking.zip

48

References:
NAT Punch-through

n  Overview
n  http://www.mindcontrol.org/~hplus/nat-punch.html

n  Unity Master Server
n  http://unity3d.com/support/documentation/Components/net-

MasterServer.html

