Game Architecture

m The code for modern games 1s highly complex

— Code bases exceeding a million lines of code

m Many commonly accepted approaches
— Developed and proven over time

— Ignore them at your peril!

m Globally optimized and balanced

— Lots of very smart folks work on each of ’em

CS 4455



Lots of Books on the Topics

m Rabin is a good
overview of
everything to do
with Games

— Some of these slides
are from 1%t edition

of this book

Game Develoment ﬁ

Second Edition

Steve Rabin, Editor



More Books

m Lots of books

m Used to use Lengyel’s engine
(C4) 1n the class

m Also

— Game Programming Gems
— Graphics Gems

— Rendering, Physics books
— etc

CS 4455

Kme Enqme Arch tecture

Jason Gregory

Foreword by Jeff Lander and Matt Whiting

Copyvighied Motaria

Mathematics

for 3D. Game Programming
and Computer Graphics
Third Edlthﬂ

Eric Lengyel



All CS is Relevant

m Software Engineering: Version control,
working with large code bases

m Profiling, debugging, memory management
m Efficient algorithms (esp. spatial ones)

— Optimization techniques, even things like strings
and fundamental math

m Some handled by good engines, some not

CS 4455



Media Courses Particularly Relevant

m 3D Graphics (pre-req)
m Animation

— Characters, physics, simulation
m Advanced Rendering

— Real-time photorealism

m Advanced Modeling and Representation

— Managing, querying, rendering, converting complex
objects and scenes

m Audio

CS 4455 5



In This Class

m Touch on Animation, Advanced Rendering,
Modeling, and Audio only 1n passing

— Classes on these

— Unity handles these, so hard to get under the hood
in more than a superficial way

m Physics
m Networking

CS 4455



Overall Architecture

m Main structure
— Game-specific code
— Game-engine code
— Level of integration varies

m Architecture types

— Ad-hoc (everything accesses everything)
— Modular

— DAG (directed acyclic graph)
— Layered

CS 4455



Overview: Initialization/Shutdown

m The initialization step prepares everything that 1s
necessary to start a part of the game

m The shutdown step undoes everything the
initialization step did, but 1n reverse order

m This 1s IMPORTANT

— Applies to main loop, down to individual steps
— In Unity:
- Start/Awake

* OnEnable/OnDisable

* OnLevelWasLoaded/OnApplicationQuit
CS 4455



Overview: The Main Loop

m All interactive programs are driven by a loop
that performs a series of tasks every frame

— @QUI, 3D, VR, Simulation

— Games are no exception

m Separate loops for the front end and the game
itself, or unified main loop

— Both work; a question of preference and style

CS 4455



Overview: Main Game Loop

http://wiki.unity3d.com/index.php?

m Tasks title=Event Execution Order
— Handling time

— Gathering player input

— Networking

— Simulation

— Collision detection and response
— Object updates

— Rendering

— Other miscellaneous tasks

CS 4455

10



Overview: Main Game Loop

m Coupling
— Can decouple the rendering step from simulation
and update steps

— Results 1n higher frame rate, smoother animation,
and greater responsiveness

* May be necessary for complex simulations

— Implementation 1s tricky and can be error-prone

» Co-routines can help, but aren’t panacea

CS 4455 11



Overview: Main Game Loop

m Execution order

— Can help keep player interaction seamless

* Avoid “one frame behind” problems
— Can maximize parallelism

— Exact ordering depends on hardware

CS 4455

12



Game Entities

m What are game entities?

— Basically anything 1n a game world that can be
interacted with

— More precisely, a self-contained piece of logical
interactive content

— Only things we will interact with should become
game entities

CS 4455

13



Game Entities

m Organization
— Simple list
— Multiple databases
— Logical tree
— Spatial database

CS 4455

14



Game Entities

m Updating
— Updating each entity once per frame can be too
expensive

— Can use a tree structure to impose a hierarchy for
updating

— Can use a priority queue to decide which entities
to update every frame

CS 4455

15



Game Entities

m Object creation
— Basic object factories
— Extensible object factories
— Using automatic registration
— Using explicit registration
m Identification (pointers vs. uids)

m Communication (messages)

CS 4455

16



Game Entities

m [evel instantiation

— Loading a level involves loading both assets and
the game state

— It 1s necessary to create the game entities and set
the correct state for them

— Using 1nstance data vs. template data

CS 4455

17



In Unity

m No explicit “game entities”
— Everything 1s a subgraph
® You define your own

— And can organize them 1n any datastructure

m Simple implementations update once per
frame

m Prefabs for creation, instantiation of graphs

CS 4455

18



Memory Management

m Only applies to languages with explicit
memory management (C or C++)

m Memory problems are one of the leading
causes of bugs 1n programs

— Or, “Reason 437 why I dislike C++”

CS 4455

19



Memory Management

m Chapter in “Introduction to Game
Development~ (Steve Rabin) is good

— E.g., avoiding memory fragmentation
m Custom memory managers are great!
m Two most important reasons:

— Simple error-checking schemes
— Debugging tools

m Engines (e.g., Unity, C4, etc) handle much of
this for you

CS 4455 20



File 1/0

m As with memory, Rabin book gives lots of
good advice on how to deal with loading
things from disk

— E.g., to avoid long load times
m Aside from efficiency, keeps things together!
m Unity handles much of this already

— For assets 1n your project

— No great support for access to other files

CS 4455 21



Game Resources

m A game resource (or asset) 1s anything that
gets loaded that could be shared by several
parts of the game

— A texture, an animation, a sound, etc
m We want to load and share resources easily

m There will be many different types of
resources 1n a game

CS 4455

22



Game Resources

m Resource manager
— Uses registering object factory pattern
— Can register different types of resources

— All resource creation goes through the resource
manager

— Any requests for existing resources don't load 1t
again

CS 4455

23



Game Resources

m Resource lifetime

— If resources are shared, how do we know when we
can destroy them?

« All at once
» At the end of the level

— Explicit lifetime management

— Reference counting

CS 4455 24



Game Resources

m Resources and instances

— Resource 1s the part of the asset that can be shared
among all parts of the game

— Instance 1s the unique data that each part of the
game needs to keep

CS 4455 25



Serialization

m Every game needs to save and restore some
game state

m Level editing and creation could be
implemented as a saved game

— Many tools use this approach to create game levels
— E.g., Nebula2 uses a simple database

m For you, may also be worth doing

CS 4455 26



Coding Practices

m http://unity3d.com/learn/tutorials/modules/
intermediate/scripting/coding-practices

m Single Responsibility
m Interfaces to reduce reliance across classes

m One class per file derived from MonoBehavior

— Unaity calls Start(), Awake(), Update(), FixedUpdate(), and
OnGUI() if there & script enabled

— http://docs.unity3d.com/ScriptReference/
MonoBehaviour.html

CS 4455 27



Coding Practices

m Objects 1in Scene are GameObjects
— Can’t be extended 1n code, directly
— Attach Components and scripts

m Other stuff

— http://docs.unity3d.com/ScriptReference/
Component.SendMessage.html

— http://docs.unity3d.com/ScriptReference/

ScriptableObject.html

CS 4455

28



