Game Architecture

m The code for modern games 1s highly complex

— Code bases exceeding a million lines of code

m Many commonly accepted approaches
— Developed and proven over time

— Ignore them at your peril!

m Globally optimized and balanced

— Lots of very smart folks work on each of ’em
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Lots of Books on the Topics

m Rabin is a good
overview of
everything to do
with Games

— Some of these slides
are from 1%t edition

of this book

Game Develoment ﬁ

Second Edition

Steve Rabin, Editor



More Books

m Lots of books

m Used to use Lengyel’s engine
(C4) 1n the class

m Also

— Game Programming Gems
— Graphics Gems

— Rendering, Physics books
— etc
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All CS is Relevant

m Software Engineering: Version control,
working with large code bases

m Profiling, debugging, memory management
m Efficient algorithms (esp. spatial ones)

— Optimization techniques, even things like strings
and fundamental math

m Some handled by good engines, some not
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Media Courses Particularly Relevant

m 3D Graphics (pre-req)
m Animation

— Characters, physics, simulation
m Advanced Rendering

— Real-time photorealism

m Advanced Modeling and Representation

— Managing, querying, rendering, converting complex
objects and scenes

m Audio

CS 4455 5



In This Class

m Touch on Animation, Advanced Rendering,
Modeling, and Audio only 1n passing

— Classes on these

— Unity handles these, so hard to get under the hood
in more than a superficial way

m Physics
m Networking
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Overall Architecture

m Main structure
— Game-specific code
— Game-engine code
— Level of integration varies

m Architecture types

— Ad-hoc (everything accesses everything)
— Modular

— DAG (directed acyclic graph)
— Layered
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Overview: Initialization/Shutdown

m The initialization step prepares everything that 1s
necessary to start a part of the game

m The shutdown step undoes everything the
initialization step did, but 1n reverse order

m This 1s IMPORTANT

— Applies to main loop, down to individual steps
— In Unity:
- Start/Awake

* OnEnable/OnDisable

* OnLevelWasLoaded/OnApplicationQuit
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Overview: The Main Loop

m All interactive programs are driven by a loop
that performs a series of tasks every frame

— @QUI, 3D, VR, Simulation

— Games are no exception

m Separate loops for the front end and the game
itself, or unified main loop

— Both work; a question of preference and style
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Overview: Main Game Loop

http://wiki.unity3d.com/index.php?

m Tasks title=Event Execution Order
— Handling time

— Gathering player input

— Networking

— Simulation

— Collision detection and response
— Object updates

— Rendering

— Other miscellaneous tasks
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Overview: Main Game Loop

m Coupling
— Can decouple the rendering step from simulation
and update steps

— Results 1n higher frame rate, smoother animation,
and greater responsiveness

* May be necessary for complex simulations

— Implementation 1s tricky and can be error-prone

» Co-routines can help, but aren’t panacea
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Overview: Main Game Loop

m Execution order

— Can help keep player interaction seamless

* Avoid “one frame behind” problems
— Can maximize parallelism

— Exact ordering depends on hardware
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Game Entities

m What are game entities?

— Basically anything 1n a game world that can be
interacted with

— More precisely, a self-contained piece of logical
interactive content

— Only things we will interact with should become
game entities
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Game Entities

m Organization
— Simple list
— Multiple databases
— Logical tree
— Spatial database
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Game Entities

m Updating
— Updating each entity once per frame can be too
expensive

— Can use a tree structure to impose a hierarchy for
updating

— Can use a priority queue to decide which entities
to update every frame
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Game Entities

m Object creation
— Basic object factories
— Extensible object factories
— Using automatic registration
— Using explicit registration
m Identification (pointers vs. uids)

m Communication (messages)
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Game Entities

m [evel instantiation

— Loading a level involves loading both assets and
the game state

— It 1s necessary to create the game entities and set
the correct state for them

— Using 1nstance data vs. template data
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In Unity

m No explicit “game entities”
— Everything 1s a subgraph
® You define your own

— And can organize them 1n any datastructure

m Simple implementations update once per
frame

m Prefabs for creation, instantiation of graphs
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Memory Management

m Only applies to languages with explicit
memory management (C or C++)

m Memory problems are one of the leading
causes of bugs 1n programs

— Or, “Reason 437 why I dislike C++”
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Memory Management

m Chapter in “Introduction to Game
Development~ (Steve Rabin) is good

— E.g., avoiding memory fragmentation
m Custom memory managers are great!
m Two most important reasons:

— Simple error-checking schemes
— Debugging tools

m Engines (e.g., Unity, C4, etc) handle much of
this for you
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File 1/0

m As with memory, Rabin book gives lots of
good advice on how to deal with loading
things from disk

— E.g., to avoid long load times
m Aside from efficiency, keeps things together!
m Unity handles much of this already

— For assets 1n your project

— No great support for access to other files
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Game Resources

m A game resource (or asset) 1s anything that
gets loaded that could be shared by several
parts of the game

— A texture, an animation, a sound, etc
m We want to load and share resources easily

m There will be many different types of
resources 1n a game
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Game Resources

m Resource manager
— Uses registering object factory pattern
— Can register different types of resources

— All resource creation goes through the resource
manager

— Any requests for existing resources don't load 1t
again
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Game Resources

m Resource lifetime

— If resources are shared, how do we know when we
can destroy them?

« All at once
» At the end of the level

— Explicit lifetime management

— Reference counting
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Game Resources

m Resources and instances

— Resource 1s the part of the asset that can be shared
among all parts of the game

— Instance 1s the unique data that each part of the
game needs to keep
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Serialization

m Every game needs to save and restore some
game state

m Level editing and creation could be
implemented as a saved game

— Many tools use this approach to create game levels
— E.g., Nebula2 uses a simple database

m For you, may also be worth doing
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Coding Practices

m http://unity3d.com/learn/tutorials/modules/
intermediate/scripting/coding-practices

m Single Responsibility
m Interfaces to reduce reliance across classes

m One class per file derived from MonoBehavior

— Unaity calls Start(), Awake(), Update(), FixedUpdate(), and
OnGUI() if there & script enabled

— http://docs.unity3d.com/ScriptReference/
MonoBehaviour.html
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Coding Practices

m Objects 1in Scene are GameObjects
— Can’t be extended 1n code, directly
— Attach Components and scripts

m Other stuff

— http://docs.unity3d.com/ScriptReference/
Component.SendMessage.html

— http://docs.unity3d.com/ScriptReference/

ScriptableObject.html
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