
Game Architecture

■  Rabin is a good
overview of
everything to do
with Games

■  A lot of these slides
come from the 1st
edition

CS 4455 1

CS 4455 2

Game Architecture

■  The code for modern games is highly complex
– Code bases exceeding a million lines of code

■  Many commonly accepted approaches
– Developed and proven over time
–  Ignore them at your peril!

■  Globally optimized and balanced
– Lots of very smart folks work on each of ’em

CS 4455 3

Overall Architecture

■  Main structure
– Game-specific code
– Game-engine code
– Level of integration varies

■  Architecture types
– Ad-hoc (everything accesses everything)
– Modular
– DAG (directed acyclic graph)
– Layered

CS 4455 4

Overview: Initialization/Shutdown

■  The initialization step prepares everything that is
necessary to start a part of the game

■  The shutdown step undoes everything the
initialization step did, but in reverse order

■  This is IMPORTANT
–  Applies to main loop, down to individual steps
–  In Unity:

  Start/Awake
  OnEnable/OnDisable
  OnLevelWasLoaded/OnApplicationQuit

CS 4455 5

Overview: The Main Loop

■  All interactive programs are driven by a loop
that performs a series of tasks every frame
– GUI, 3D, VR, Simulation
– Games are no exception

■  Separate loops for the front end and the game
itself, or unified main loop
– Both work; a question of preference and style

CS 4455 6

Overview: Main Game Loop

■  Tasks
–  Handling time
–  Gathering player input
–  Networking
–  Simulation
–  Collision detection and response
–  Object updates
–  Rendering
–  Other miscellaneous tasks

http://wiki.unity3d.com/index.php?
title=Event_Execution_Order

CS 4455 7

Overview: Main Game Loop

■  Coupling
– Can decouple the rendering step from simulation

and update steps
– Results in higher frame rate, smoother animation,

and greater responsiveness
  May be necessary for complex simulations

–  Implementation is tricky and can be error-prone
  Co-routines can help, but aren’t panacea

CS 4455 8

Overview: Main Game Loop

■  Execution order
– Can help keep player interaction seamless

  Avoid “one frame behind” problems

– Can maximize parallelism
– Exact ordering depends on hardware

CS 4455 9

Game Entities

■  What are game entities?
– Basically anything in a game world that can be

interacted with
– More precisely, a self-contained piece of logical

interactive content
– Only things we will interact with should become

game entities

CS 4455 10

Game Entities

■  Organization
– Simple list
– Multiple databases
– Logical tree
– Spatial database

CS 4455 11

Game Entities

■  Updating
– Updating each entity once per frame can be too

expensive
– Can use a tree structure to impose a hierarchy for

updating
– Can use a priority queue to decide which entities

to update every frame

CS 4455 12

Game Entities

■  Object creation
– Basic object factories
– Extensible object factories
– Using automatic registration
– Using explicit registration

■  Identification (pointers vs. uids)
■  Communication (messages)

CS 4455 13

Game Entities

■  Level instantiation
– Loading a level involves loading both assets and

the game state
–  It is necessary to create the game entities and set

the correct state for them
– Using instance data vs. template data

CS 4455 14

Memory Management

■  Only applies to languages with explicit
memory management (C or C++)

■  Memory problems are one of the leading
causes of bugs in programs
– Or, “Reason 437 why I dislike C++”

CS 4455 15

Memory Management

■  Chapter in “Introduction to Game
Development” (Steve Rabin) is good
– E.g., avoiding memory fragmentation

■  Custom memory managers are great!
■  Two most important reasons:

– Simple error-checking schemes
– Debugging tools

■  Engines (e.g., Unity, C4, etc) handle much of
this for you

CS 4455 16

File I/O

■  As with memory, Rabin book gives lots of
good advice on how to deal with loading
things from disk
– E.g., to avoid long load times

■  Aside from efficiency, keeps things together!
■  Unity handles much of this already

– For assets in your project
– No great support for access to other files

CS 4455 17

Game Resources

■  A game resource (or asset) is anything that
gets loaded that could be shared by several
parts of the game
– A texture, an animation, a sound, etc

■  We want to load and share resources easily
■  There will be many different types of

resources in a game

CS 4455 18

Game Resources

■  Resource manager
– Uses registering object factory pattern
– Can register different types of resources
– All resource creation goes through the resource

manager
– Any requests for existing resources don't load it

again

CS 4455 19

Game Resources

■  Resource lifetime
–  If resources are shared, how do we know when we

can destroy them?
  All at once
  At the end of the level

– Explicit lifetime management
– Reference counting

CS 4455 20

Game Resources

■  Resources and instances
– Resource is the part of the asset that can be shared

among all parts of the game
–  Instance is the unique data that each part of the

game needs to keep

CS 4455 21

Serialization

■  Every game needs to save and restore some
game state

■  Level editing and creation could be
implemented as a saved game
– Many tools use this approach to create game levels
– E.g., Nebula2 uses a simple database

■  For you, may also be worth doing

