
Watercolor Inspired Non-Photorealistic Rendering for Augmented Reality

Jiajian Chen, Greg Turk and Blair MacIntyre
School of Interactive Computing, GVU Center

Georgia Institute of Technology

Abstract
Non-photorealistic rendering (NPR) is an attractive approach for
seamlessly blending virtual and physical content in Augmented
Reality (AR) applications. Simple NRP techniques, that use
information from a single rendered image, have been
demonstrated in real-time AR systems. More complex NRP
techniques require visual coherence across multiple frames of
video, and typical offline algorithms are expensive and/or require
global knowledge of the video sequence. To use such techniques
in real-time AR, fast algorithms must be developed that do not
require information past the currently rendered frame. This paper
presents a watercolor-like NPR style for AR applications with
some degree of visual coherence.

CR Categories: I.3.5 [Non Photorealistic Rendering]: Hardware
Accelerated Rendering—Painterly Rendering

Keywords: Non-photorealistic rendering (NPR), Augmented
Reality (AR), Voronoi diagrams.

1 Introduction
Augmented reality (AR) has been suggested for a range of
applications, from medical to maintenance to tourism to games.
For some of these applications (e.g., medical), an AR system
should keep the virtual and physical content visually distinct. For
others (e.g., games), the virtual and physical content may need to
be seamlessly blended. One approach is to make the virtual
content as photorealistic as possible, but perfect blending of
virtual and physical content in real-time in a live AR system,
possibly in an unconstrained environment, is extremely difficult.
An alternative approach is to use non-photorealistic (NPR)
rendering techniques to create a stylized blend of the virtual and
physical worlds, such that the two are indistinguishable. A variety
of simple NPR styles have been implemented in AR systems,
including cartoon-like, brush stroke and illustrative stylization
[Fischer05a, Fischer05b, Haller04]. Unfortunately, all of the work
to date has been limited to techniques that can be applied
independently to each rendered frame.

In contrast, a range of interesting and compelling NPR effects,
such as painterly rendering [Hertzmann00], watercolor rendering
[Bousseau06, Bousseau07] and mosaic rendering [Battiato07],
have been demonstrated in offline systems. These techniques
typically analyze the video sequence, leveraging temporal and
visual coherence in the video sequence. Unfortunately, many of
these effects are extremely computationally expensive, or

leverage information from future video frames, both of which are
impossible in a real-time AR system.

The goal of our research is to create real-time AR NPR video
effects of the sort that require visual and temporal coherence, such
as water-colorization or mosaics. This paper presents our first step
toward this goal, a water-colorization-like rendering technique for
AR. Beyond describing this algorithm, we use it to illustrate the
need for coherence and discuss our future plans in this area.

2 Watercolor-like Rendering for AR
Water-colorization for static images and videos is an interesting
topic with a long history. [Curtis97] uses an ordered set of
translucent glazes to model watercolor effects. A Kubelka-Munk
compositing model is utilized to simulate the optical effect of the
superimposed glazes. The method operates on each frame
independently. [Bousseau07] proposes a method for maintaining
temporal coherence in watercolor-like video. It employs texture
advection along lines of optical flow to maintain texture
coherence, and mathematical morphology to maintain abstraction
coherence. All these past methods have focused on offline
processing of a complete video sequence, but are too time-
consuming for online rendering in a live AR video system.

In this paper we propose to use Voronoi diagrams to mimic
the watercolor effects, adjusting the cells that lie along strong
silhouette edges in the image in real-time to help maintain visual
coherence at a relatively low temporal cost. A snapshot from our
watercolor stylized AR video is shown in Figure 1.

3 NPR Algorithm Descriptions
The idea of using Voronoi diagrams is inspired by several NPR
papers [Hausner01, Battiato07]. Those papers use Voronoi
diagrams to create various non-rigid rendering styles, such as the
digital mosaic style for images and videos. We found that the 2D
Voronoi diagrams can be effectively used to produce a watercolor
inspired effect for live AR video in real time. It creates a non-rigid
color bleeding along the edges of objects in the video. Also, by re-

Figure 1: Watercolor-like AR. Three virtual objects (a teapot,
a cube and a bunny) and several real objects (pens, notes, a
bottle and a tissue box) are stylized.

e-mail: {johnchen, turk, blair}@cc.gatech.edu

1 1(,) , ,
2 2

1 10 , 0 ,
2 2

W HV i j j random i random
n m

i m j n random

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

≤ < ≤ < − < <

tiling Voronoi cells along edges detected in the video frame, it
keeps some degree of visual coherence in the output video.

The algorithms can be divided into two parts: creating a
watercolor-like style using a 2D Voronoi diagram, and keeping
visual coherence by detecting strong edges and re-tiling the
Voronoi cells. In the first part, an AR video frame is processed
using a Voronoi pattern to produce the color bleeding effect. In
the second part, Voronoi cells are re-tiled to keep visual
coherence in each independent video frame.

3.1 Using Voronoi Diagrams to Tile the Image

Given an AR image that is a blend of video and computer-
generated objects, our first task is to create a tiled version of this
scene. We begin by creating a tiling of the plane with a Voronoi
diagram, and then we color these tiles based on the original image.
We use a jittered sampling of the plane in order to create the
centers of the Voronoi cells for our tiling. Assume the size of the
video frame is WxH, and that we will create m*n tiles. The jittered
center of the Voronoi cell at the i-th row and j-th column is then
chosen as follows:

To create the Voronoi cells, we use the observation that a
Voronoi diagram can be created by placing a cone at each of the
cell centers [Hausner01]. The portion of a given cone that is
closer than all other cones delineates one of the Voronoi cells.
Using graphics hardware, these cones are approximated by
collections of polygons, and the closest portions of the cones are
determined by depth buffering. We rasterize m*n cones at the
centers V(i, j) with depth buffering enabled. During rasterization,
each cone is given a unique RGB color so that the region of each
cone can be identified by examining the pixel colors from the
framebuffer. The framebuffer that we read back is divided into
m*n Voronoi regions by the Voronoi cells. Figure 2 shows a low
resolution version of what the frame buffer looks like after the
cones have been rasterized. The screen is divided into many
irregular Voronoi regions.

The index of the Voronoi region for pixel (i, j) is decoded
from its RGB color. These regions form a Voronoi pattern that
we then use to create a watercolor inspired style for AR video
frame. To produce the final tiled image, we color each Voronoi
cell according to the average color of the original image within
the cell. Figure 3 is an original AR video frame, and Figure 4 is
the frame stylized using such a Voronoi tiling. Note that others
have used Voronoi tilings to create mosaic rendering styles for
single image off-line non-photorealistic rendering [Hausner01,
Battiato07].

Many watercolor paintings include dark strokes that highlight
object silhouettes. In the next step we mimic this style by
detecting and drawing strong edges in the video frame. By
combining these two steps (tiling and edge drawing) we produce a
watercolor inspired NPR style for augmented reality.

3.2 Edge Detection
Edge detection is a common technique for NPR rendering, since
many NPR styles highlight silhouettes and strong edges. For
example, [Fisher05a] uses YUV space to detect strong edges in
the AR video frame.

In our algorithm, we first render the virtual objects using a
simple toon shader, and later detect edges in this AR frame. The
reason that we use a simple toon shading instead of default
OpenGL Gouraud shading is that we want to exaggerate the color
difference between so we can get better edge detection results.

Our toon shader performs intensity thresholding to create just
three discrete suface intensities instead of using continuous shades
for an object’s surface. The code of our fragment shader for toon
shading is given below.
varying vec3 lightDir,normal;
uniform vec3 myColor;
void main()
{
 vec4 color;
 vec3 n = normalize(normal);
 float intensity = dot(lightDir,n);
 if (intensity > 0.7) color = vec4(myColor, 1.0);
 else if (intensity > 0.2) color = vec4(0.4 * myColor, 1.0);
 else color = vec4(0.1 * myColor, 1.0);
 gl_FragColor = color;
}

Figure 2: A Voronoi pattern in the frame buffer. We have
chosen different brighter color for each region in this image to
make the regions easy to see. In the actual algorithm the color of
each region is determined by its region index k.

Figure 3: An original AR frame (640x480).

Figure 4: Image processed by a Voronoi pattern(M=80,N=60).

()

()

1
2

3
, 1

?

U V
YUV Y

R G B
RGB

YUV RGB

Edge

Edge

Yes if Edge Edge threshold
Edge

No

α α

β β

∇ + ∇
= − ⋅ ∇ + ⋅

∇ + ∇ + ∇
=

⋅ + − ⋅ >⎧
= ⎨
⎩

The virtual objects and the video background are rendered and
combined to a texture. Edges are detected in a fragment shader in
the GPU so we don’t need to copy the pixel data of this texture to
the CPU. The pixel information in both of RGB and YUV color
space are used to detect edges. The pixel conversion between
these two color spaces can be performed in a shader as shown
below.

The equation for edge detection is shown below. ∇ is the color
difference along the x-axis and the y-axis. If this value is larger
than a threshold then this pixel is considered to be an edge pixel.

An AR video frame with edge detection is shown in Figure 5.
The silhouettes are detected for three virtual objects (the teapot,
the cube and the bunny) and for the objects in the real world.

3.3 Re-tiling Voronoi Cells
Visual coherence is a key challenge in video NPR processing.
Many papers have studied on this topic. [Bousseau07] uses
advection texture to keep temporal coherence in watercolor
rendering for a general video. Some NPR papers use geometry
information to maintain temporal coherence. However, those
methods are too expensive to use for real-time AR video.

We keep visual coherence by re-tiling Voronoi cells along the
strong edges in the scene. If we kept the same Voronoi pattern
and apply it to each video frame all the time, the output video
would have an undesired “shower door” look. To avoid this
appearance we re-tile the Voronoi cells along the strong edges in
each video frame, thus generating a new Voronoi pattern. Our
approach is to pull each Voronoi cell towards strong edges in the
image. This gives the appearance of color bleeding between
regions since the cells will straddle two regions that are separated
by an edge. Note that this is in some sense the reverse of
Hausner’s technique of having Voronoi cells aviod strong edges
[Hausner01]. Our procedure is as follows:
• Go through each Voronoi region to compute the average

center of all edge pixels in that region. This average edge
pixel location becomes the new center for a cell. If the
number of edge pixels is smaller than a threshold in a region,
then keep the previous center for that region.

• Move the Voronoi cells to the new centers and rasterize the
cones again.

• Read back the frame buffer and use it as a new Voronoi
pattern.

Ideally we want to generate a new Voronoi pattern for each
video frame, but it’s an expensive procedure since we need to
read back the frame buffer from GPU to CPU by using
glReadPixels. To balance the speed and quality of the output
AR video, we do this re-tiling periodically, re-tiling the Voronoi
cells and generating a new pattern every 10 frames. We are
investigating the possibility of performing the tiling entirely on
the GPU, which should allow us to generate a new tiling pattern
every frame.

4 Implementation Details
The workflow of our NPR renderer is shown in Figure 7.

Figure 7: Workflow of the watercolor style rendering.

We used OpenGL extensions (ARB functions) and the GLSL
shading language to accelerate the rendering in the GPU. All
intermediate results are rendered and manipulated as textures. By
directly manipulating the texture in shaders we eliminated the
expensive data copy between the GPU and the CPU.

We created a Frame Buffer Object (FBO) with two frame
buffers. The content of each buffer is linked with a texture ID and
it can be directly used as a texture. As shown in Figure 7, most
steps are done by manipulating these two textures. Shaders are
used to render the virtual objects and to detect edges. The steps in
the rendering procedure are listed below. The numbers given in
brackets are shown in the workflow graph.
• Generate an initial Voronoi pattern (4).
• Fetch a frame from the video camera and render the video

background and virtual objects (1,2) to the first frame buffer
in FBO to generate the original AR frame as a texture (3).

• Copy this texture from the first frame buffer to the second
frame buffer in FBO (3).

Figure 5: Detected edges in an AR frame. Figure 6: A final rendering, combining tiling and edges.

()
4 ;
4 2 , ;
4 *

mat RGBtoYUV
vec rgb texture D tex texcoord
vec yuv RGBtoYUV rgb

=

=

1 Grab a Video
Frame

2 Draw Virtual
Objects with Toon

Shader

3 AR Video Frame
in a Texture

5 Processed AR
Video Frame in a

Texture

4 Generate a
Voronoi Pattern

3 AR Video Frame
in a Texture

7 Output this
Stylized Frame to
the Screen Quad

6 Detect Edge Info
in this Texture

• Use glMapBuffer to access (3) and modify pixels based
on the Voronoi pattern in (4), and place the processed AR
video frame into a texture (5).

• Output the stylized frame to the quad. This process is done in
a fragment shader. The input to this shader are two textures,
one containing the tiled image and another with the edges.
The shader draws the edges on top of the tiled image.

• Re-tile the Voronoi cells based on the detected edges.
The most expensive step is (5). This step computes the

average color of all Voronoi regions in the current pattern and
assigns the color to each pixel in the current frame. Also, this is
the only step that can stall the rendering pipeline because it calls
glMapBuffer. It would be possible to accelerate this by
reading only a portion of the pixel buffer, processing the pixel
data in a separate thread, and then reading another portion of the
pixel buffer. We did not resort to this in our system since our
video resolution is relatively small (640x480).

Another possible way to eliminate this bottleneck for higher
resolutions is to perform the non-regular color averaging on the
GPU. The algorithm would have the following steps:
• Generate the Voronoi pattern.
• Use two input textures in the fragment shader: the current

AR frame texture and the Voronoi pattern. For each pixel p,
search its 16x16 neighbors in the Voronoi texture and record
the positions (texture coordinates offsets) of the neighbors
that have the same color as the current pixel p.

• Compute the average color of the pixels in this list of
positions in the AR frame texture and assign this color to p in
the final output image.

This approach is similar to performing convolution on the
GPU. The difference between this and the typical method for
convolution is that in our case each pixel has a unique kernel
value and size, and kernels for a pixel may change over time.

Our system runs on a Windows PC with Xeon 2.2GHz CPU
and an nVidia G7950 graphics card. This graphics card supports
OpenGL extensions (e.g., Pixel Buffer Object and Frame Buffer
Object) and GLSL. We use a PointGrey flea camera, which
provides a crisp and bright video that is superior to Webcam
videos. Pictures in this paper are captured from a live AR video.
The video resolution is 640x480 and the frame rate is 15fps. Our
algorithm uses the GPU to effectively process the image in
shaders, so the method is applicable for higher resolution AR
videos with a fast graphics card.

5 Conclusion and Future Work
We have demonstrated the use of Voronoi diagrams to create a
real-time watercolor inspired style for live AR video. We achieve
visual coherence by detecting strong edges and re-tiling the
Voronoi cells along these edges. A near-term goal is to see if the
Voronoi regions can be constructed entirely on the GPU.
Currently this method of keeping visual coherence considers only
independent video frames. In future work, we hope to use
information from multiple frames to improve between-frame
coherence. We also plan to investigate using simulated paper and
canvas textures, as done by [Cunzi03].

References
BATTIATO, S., BLASI G., FARINELLA G. AND GALLO G. 2007.

Digital Mosaic Frameworks - An Overview. In Computer
Graphics Forum Vol. 26(4) 794-812.

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F. X.
2006. Interactive watercolor rendering with temporal coherence
and abstraction. In International Symposium on Non-
Photorealistic Animation and Rendering (NPAR), 141-149.

BOUSSEAU, A., NEYRET, F., THOLLOT, J., AND SALESIN, D. 2007.
Video Watercolorization using Bidirectional Texture Advection.
In ACM Transactions on Graphics, 26(3): 104:1-104:7.

CUNZI, M., THOLLOT, J., PARIS, S., DEBUNNE, G., GASCUEL, J-D.,
DURAND, F. 2003. Dynamic canvas for non-photorealistic
walkthroughs. In Graphics Interface 2003.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W.,
AND SALESIN, D. H. 1997. Computer-generated watercolor. In
SIGGRAPH 97, 421-430.

FISCHER, J., AND BARTZ, D. 2005a. Real-time cartoon-like
stylization of AR video stream on the GPU. Technical Report
WSI-2005-18, Wilhelm Schickard Institute, 2005

FISCHER, J., BARTZ, D., AND STRASSER, W. 2005b. Artistic reality:
Fast brush stroke stylization for augmented reality. In Proc. of
ACM VRST 2005. 155-158.

HALLER, M. Photorealism or/and Non-photorealism in
Augmented Reality. 2004. In ACM International Conference on
Virtual Reality Continuum and its Applications in Industry, 189-
196.

HAUSNER, A. Simulating Decorative Mosaics. 2001. In
SIGGRAPH 2001, 573-580

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for
video and interaction. In International Symposium on Non-
Photorealistic Animation and Rendering (NPAR), 7-12.

LUM, E. B., AND MA, K.-L. 2001. Non-photorealistic rendering
using watercolor inspired textures and illumination. In Pacific
Graphics, 322-331.

Figure 8: Two screenshots from a watercolor stylized AR video.

