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Abstract 
Non-photorealistic rendering (NPR) is an attractive approach for 
seamlessly blending virtual and physical content in Augmented 
Reality (AR) applications. Simple NRP techniques, that use 
information from a single rendered image, have been 
demonstrated in real-time AR systems.  More complex NRP 
techniques require visual coherence across multiple frames of 
video, and typical offline algorithms are expensive and/or require 
global knowledge of the video sequence.  To use such techniques 
in real-time AR, fast algorithms must be developed that do not 
require information past the currently rendered frame. This paper 
presents a watercolor-like NPR style for AR applications with 
some degree of visual coherence. 
 
CR Categories: I.3.5 [Non Photorealistic Rendering]: Hardware 
Accelerated Rendering—Painterly Rendering  
 
Keywords: Non-photorealistic rendering (NPR), Augmented 
Reality (AR), Voronoi diagrams. 

1 Introduction 
Augmented reality (AR) has been suggested for a range of 
applications, from medical to maintenance to tourism to games. 
For some of these applications (e.g., medical), an AR system 
should keep the virtual and physical content visually distinct.  For 
others (e.g., games), the virtual and physical content may need to 
be seamlessly blended.  One approach is to make the virtual 
content as photorealistic as possible, but perfect blending of 
virtual and physical content in real-time in a live AR system, 
possibly in an unconstrained environment, is extremely difficult. 
An alternative approach is to use non-photorealistic (NPR) 
rendering techniques to create a stylized blend of the virtual and 
physical worlds, such that the two are indistinguishable. A variety 
of simple NPR styles have been implemented in AR systems, 
including cartoon-like, brush stroke and illustrative stylization 
[Fischer05a, Fischer05b, Haller04]. Unfortunately, all of the work 
to date has been limited to techniques that can be applied 
independently to each rendered frame.  

In contrast, a range of interesting and compelling NPR effects, 
such as painterly rendering [Hertzmann00], watercolor rendering 
[Bousseau06, Bousseau07] and mosaic rendering [Battiato07], 
have been demonstrated in offline systems. These techniques 
typically analyze the video sequence, leveraging temporal and 
visual coherence in the video sequence. Unfortunately, many of 
these effects are extremely computationally expensive, or 

leverage information from future video frames, both of which are 
impossible in a real-time AR system. 

The goal of our research is to create real-time AR NPR video 
effects of the sort that require visual and temporal coherence, such 
as water-colorization or mosaics. This paper presents our first step 
toward this goal, a water-colorization-like rendering technique for 
AR. Beyond describing this algorithm, we use it to illustrate the 
need for coherence and discuss our future plans in this area. 

2 Watercolor-like Rendering for AR 
Water-colorization for static images and videos is an interesting 
topic with a long history. [Curtis97] uses an ordered set of 
translucent glazes to model watercolor effects. A Kubelka-Munk 
compositing model is utilized to simulate the optical effect of the 
superimposed glazes. The method operates on each frame 
independently. [Bousseau07] proposes a method for maintaining 
temporal coherence in watercolor-like video. It employs texture 
advection along lines of optical flow to maintain texture 
coherence, and mathematical morphology to maintain abstraction 
coherence. All these past methods have focused on offline 
processing of a complete video sequence, but are too time-
consuming for online rendering in a live AR video system.  

In this paper we propose to use Voronoi diagrams to mimic 
the watercolor effects, adjusting the cells that lie along strong 
silhouette edges in the image in real-time to help maintain visual 
coherence at a relatively low temporal cost. A snapshot from our 
watercolor stylized AR video is shown in Figure 1. 

3    NPR Algorithm Descriptions 
The idea of using Voronoi diagrams is inspired by several NPR 
papers [Hausner01, Battiato07]. Those papers use Voronoi 
diagrams to create various non-rigid rendering styles, such as the 
digital mosaic style for images and videos. We found that the 2D 
Voronoi diagrams can be effectively used to produce a watercolor 
inspired effect for live AR video in real time. It creates a non-rigid 
color bleeding along the edges of objects in the video. Also, by re-

Figure 1: Watercolor-like AR. Three virtual objects (a teapot, 
a cube and a bunny) and several real objects (pens, notes, a 
bottle and a tissue box) are stylized. 
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tiling Voronoi cells along edges detected in the video frame, it 
keeps some degree of visual coherence in the output video. 

The algorithms can be divided into two parts: creating a 
watercolor-like style using a 2D Voronoi diagram, and keeping 
visual coherence by detecting strong edges and re-tiling the 
Voronoi cells. In the first part, an AR video frame is processed 
using a Voronoi pattern to produce the color bleeding effect. In 
the second part, Voronoi cells are re-tiled to keep visual 
coherence in each independent video frame.  

3.1   Using Voronoi Diagrams to Tile the Image 

Given an AR image that is a blend of video and computer-
generated objects, our first task is to create a tiled version of this 
scene.  We begin by creating a tiling of the plane with a Voronoi 
diagram, and then we color these tiles based on the original image.  
We use a jittered sampling of the plane in order to create the 
centers of the Voronoi cells for our tiling.  Assume the size of the 
video frame is WxH, and that we will create m*n tiles. The jittered 
center of the Voronoi cell at the i-th row and j-th column is then 
chosen as follows: 
 

To create the Voronoi cells, we use the observation that a 
Voronoi diagram can be created by placing a cone at each of the 
cell centers [Hausner01].  The portion of a given cone that is 
closer than all other cones delineates one of the Voronoi cells.  
Using graphics hardware, these cones are approximated by 
collections of polygons, and the closest portions of the cones are 
determined by depth buffering. We rasterize m*n cones at the 
centers V(i, j) with depth buffering enabled.  During rasterization, 
each cone is given a unique RGB color so that the region of each 
cone can be identified by examining the pixel colors from the 
framebuffer.  The framebuffer that we read back is divided into 
m*n Voronoi regions by the Voronoi cells. Figure 2 shows a low 
resolution version of what the frame buffer looks like after the 
cones have been rasterized. The screen is divided into many 
irregular Voronoi regions.  

The index of the Voronoi region for pixel (i, j) is decoded 
from its RGB color.  These regions form a Voronoi pattern that 
we then use to create a watercolor inspired style for AR video 
frame.  To produce the final tiled image, we color each Voronoi 
cell according to the average color of the original image within 
the cell.  Figure 3 is an original AR video frame, and Figure 4 is 
the frame stylized using such a Voronoi tiling. Note that others 
have used Voronoi tilings to create mosaic rendering styles for 
single image off-line non-photorealistic rendering [Hausner01, 
Battiato07]. 

Many watercolor paintings include dark strokes that highlight 
object silhouettes. In the next step we mimic this style by 
detecting and drawing strong edges in the video frame. By 
combining these two steps (tiling and edge drawing) we produce a 
watercolor inspired NPR style for augmented reality. 

3.2 Edge Detection 
Edge detection is a common technique for NPR rendering, since 
many NPR styles highlight silhouettes and strong edges. For 
example, [Fisher05a] uses YUV space to detect strong edges in 
the AR video frame.  

In our algorithm, we first render the virtual objects using a 
simple toon shader, and later detect edges in this AR frame. The 
reason that we use a simple toon shading instead of default 
OpenGL Gouraud shading is that we want to exaggerate the color 
difference between so we can get better edge detection results.   

Our toon shader performs intensity thresholding to create just 
three discrete suface intensities instead of using continuous shades 
for an object’s surface.  The code of our fragment shader for toon 
shading is given below. 
varying vec3 lightDir,normal; 
uniform vec3 myColor; 
void main() 
{ 
 vec4 color; 
 vec3 n = normalize(normal); 
 float intensity = dot(lightDir,n); 
 if (intensity > 0.7)   color = vec4(myColor, 1.0); 
 else if (intensity > 0.2)  color = vec4(0.4 * myColor, 1.0); 
 else    color = vec4(0.1 * myColor, 1.0); 
 gl_FragColor = color; 
} 

Figure 2: A Voronoi pattern in the frame buffer. We have 
chosen different brighter color for each region in this image to 
make the regions easy to see. In the actual algorithm the color of 
each region is determined by its region index k. 

Figure 3: An original AR frame (640x480). 

Figure 4: Image processed by a Voronoi pattern(M=80,N=60). 
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The virtual objects and the video background are rendered and 
combined to a texture. Edges are detected in a fragment shader in 
the GPU so we don’t need to copy the pixel data of this texture to 
the CPU. The pixel information in both of RGB and YUV color 
space are used to detect edges. The pixel conversion between 
these two color spaces can be performed in a shader as shown 
below. 

 

The equation for edge detection is shown below. ∇ is the color 
difference along the x-axis and the y-axis. If this value is larger 
than a threshold then this pixel is considered to be an edge pixel. 
 

An AR video frame with edge detection is shown in Figure 5. 
The silhouettes are detected for three virtual objects (the teapot, 
the cube and the bunny) and for the objects in the real world.  

3.3 Re-tiling Voronoi Cells 
Visual coherence is a key challenge in video NPR processing. 
Many papers have studied on this topic. [Bousseau07] uses 
advection texture to keep temporal coherence in watercolor 
rendering for a general video. Some NPR papers use geometry 
information to maintain temporal coherence. However, those 
methods are too expensive to use for real-time AR video. 

We keep visual coherence by re-tiling Voronoi cells along the 
strong edges in the scene.  If we kept the same Voronoi pattern 
and apply it to each video frame all the time, the output video 
would have an undesired “shower door” look. To avoid this 
appearance we re-tile the Voronoi cells along the strong edges in 
each video frame, thus generating a new Voronoi pattern.  Our 
approach is to pull each Voronoi cell towards strong edges in the 
image.  This gives the appearance of color bleeding between 
regions since the cells will straddle two regions that are separated 
by an edge.  Note that this is in some sense the reverse of 
Hausner’s technique of having Voronoi cells aviod strong edges 
[Hausner01].  Our procedure is as follows: 
• Go through each Voronoi region to compute the average 

center of all edge pixels in that region.  This average edge 
pixel location becomes the new center for a cell.  If the 
number of edge pixels is smaller than a threshold in a region, 
then keep the previous center for that region.  

• Move the Voronoi cells to the new centers and rasterize the 
cones again. 

• Read back the frame buffer and use it as a new Voronoi 
pattern. 

Ideally we want to generate a new Voronoi pattern for each 
video frame, but it’s an expensive procedure since we need to 
read back the frame buffer from GPU to CPU by using 
glReadPixels.  To balance the speed and quality of the output 
AR video, we do this re-tiling periodically, re-tiling the Voronoi 
cells and generating a new pattern every 10 frames.  We are 
investigating the possibility of performing the tiling entirely on 
the GPU, which should allow us to generate a new tiling pattern 
every frame. 

4 Implementation Details  
The workflow of our NPR renderer is shown in Figure 7. 

Figure 7: Workflow of the watercolor style rendering. 
 

We used OpenGL extensions (ARB functions) and the GLSL 
shading language to accelerate the rendering in the GPU. All 
intermediate results are rendered and manipulated as textures. By 
directly manipulating the texture in shaders we eliminated the 
expensive data copy between the GPU and the CPU.  

We created a Frame Buffer Object (FBO) with two frame 
buffers. The content of each buffer is linked with a texture ID and 
it can be directly used as a texture. As shown in Figure 7, most 
steps are done by manipulating these two textures. Shaders are 
used to render the virtual objects and to detect edges. The steps in 
the rendering procedure are listed below. The numbers given in 
brackets are shown in the workflow graph. 
• Generate an initial Voronoi pattern (4). 
• Fetch a frame from the video camera and render the video 

background and virtual objects (1,2) to the first frame buffer 
in FBO to generate the original AR frame as a texture (3).  

• Copy this texture from the first frame buffer to the second 
frame buffer in FBO (3). 

Figure 5: Detected edges in an AR frame. Figure 6: A final rendering, combining tiling and edges.
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• Use glMapBuffer to access (3) and modify pixels based 
on the Voronoi pattern in (4), and place the processed AR 
video frame into a texture (5). 

• Output the stylized frame to the quad. This process is done in 
a fragment shader. The input to this shader are two textures, 
one containing the tiled image and another with the edges. 
The shader draws the edges on top of the tiled image.  

• Re-tile the Voronoi cells based on the detected edges. 
The most expensive step is (5). This step computes the 

average color of all Voronoi regions in the current pattern and 
assigns the color to each pixel in the current frame. Also, this is 
the only step that can stall the rendering pipeline because it calls 
glMapBuffer. It would be possible to accelerate this by 
reading only a portion of the pixel buffer, processing the pixel 
data in a separate thread, and then reading another portion of the 
pixel buffer. We did not resort to this in our system since our 
video resolution is relatively small (640x480). 

Another possible way to eliminate this bottleneck for higher 
resolutions is to perform the non-regular color averaging on the 
GPU.  The algorithm would have the following steps: 
• Generate the Voronoi pattern.  
• Use two input textures in the fragment shader: the current 

AR frame texture and the Voronoi pattern. For each pixel p, 
search its 16x16 neighbors in the Voronoi texture and record 
the positions (texture coordinates offsets) of the neighbors 
that have the same color as the current pixel p. 

• Compute the average color of the pixels in this list of 
positions in the AR frame texture and assign this color to p in 
the final output image. 

This approach is similar to performing convolution on the 
GPU. The difference between this and the typical method for 
convolution is that in our case each pixel has a unique kernel 
value and size, and kernels for a pixel may change over time. 

Our system runs on a Windows PC with Xeon 2.2GHz CPU 
and an nVidia G7950 graphics card. This graphics card supports 
OpenGL extensions (e.g., Pixel Buffer Object and Frame Buffer 
Object) and GLSL. We use a PointGrey flea camera, which 
provides a crisp and bright video that is superior to Webcam 
videos. Pictures in this paper are captured from a live AR video. 
The video resolution is 640x480 and the frame rate is 15fps. Our 
algorithm uses the GPU to effectively process the image in 
shaders, so the method is applicable for higher resolution AR 
videos with a fast graphics card. 

5 Conclusion and Future Work 
We have demonstrated the use of Voronoi diagrams to create a 
real-time watercolor inspired style for live AR video. We achieve 
visual coherence by detecting strong edges and re-tiling the 
Voronoi cells along these edges. A near-term goal is to see if the 
Voronoi regions can be constructed entirely on the GPU.  
Currently this method of keeping visual coherence considers only 
independent video frames. In future work, we hope to use 
information from multiple frames to improve between-frame 
coherence.  We also plan to investigate using simulated paper and 
canvas textures, as done by [Cunzi03]. 
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Figure 8: Two screenshots from a watercolor stylized AR video.


